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ABSTRACT 

The apsidal method is used to show that for near circular orbits, the ECE2 force 

equation produces a well defined precession of the perihelion. In the limit of zero spin 

connection the orbit is a conic section. The vacuum force of ECE2 theory modifies the orbit 

into an integral which can be worked out numerically, and which can also be approximated in 

the near circular limit of low eccentricity. The two near circular approximations must 

produce the same overall result so are equated to give new information. The origin of 

precession is shown to be isotropically averaged vacuum fluctuations. 
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1. INTRODUCTION. 

In recent papers of this series { 1 - 41 } the ECE2 covariant theory of 

universal gravitation has been used to show that the origin of precession is the isotropically 

averaged vacuum fluctuations that are the origin of the Lamb shift. The spin connection of 

ECE2 theory has been expressed in terms of these vacuum fluctuations, and the spin 

connection term of the force equation has been identified as the vacuum term. In Section 2 it 

is shown that the force equation ofECE2 universal gravitation produces precession in 

general. The apsidal method is applied in the near circular approximation and the orbit 

evaluated numerically from the force equation in terms of a well defined integral. In general 

this integral has no analytical solution, but it can be integrated numerically provided that care 

is taken near singularities. It can also be approximated analytically in the near circular 

approximation. Comparison of the two near circular approximations gives a complete 

solution. As the spin connection goes to zero, the orbit approaches a conic section and 

Newtonian universal gravitation is retrieved as the spin connection vanishes. So the theory is 

rigorously self consistent. 

This paper is a brief synopsis of extensive calculations and preliminary 

calculations in the accompanying Notes which should be studied with UFT403 on 

www.aias.us and www.upitec.org. The ideas and calculations in the Notes gradually 

crystallize into the finished paper. Note 403(1) describes an approximation to the· ECE2 

equation of orbits, Note 403(2) develops a method to describe precession, Notes 403(3) and 

403(4) develop an analytical approximation to a precessing orbit Note 403(5) gives an 

approximate solution in the low eccentricity limit. The apsidal method of Section 2 is based 

on Notes 403(6) and 403(10), the final version ofNote 403(6). Notes 403(7) to 403(9) 

develop solutions for the ECE2 covariant orbit. 

Section 3 is a numerical and graphical analysis. 



2. THE APSIDAL METHOD AND ANALYTICAL ORBIT 

For nearly circular orbits of low eccentricity, the apsidal angle, the angle 

between two turning points or asides of the orbit, is defined by: 
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where F is the force between an object of mass m orbiting an object of mass M, and where: -
f I 

Eq. (1) gives a simple method for calculating the precession ofthe perihelion for a given 

force law, and has been developed in pervious UFT papers. It is described by Fitzgerald in 

wwvv.farside.ph.utexas.edu/teaching/336k. For example, consider the force law of the 

obsolete Einsteinian general relativity (EGR) for ease of reference only: 
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where G is Newton's constant and L is the constant angular momentum. Here r is the 

magnitude of the vector r joining m and M, and cis the speed oflight. Therefore: 
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and the apsidal angle is: 
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At the perihelion, the distance of closest approach: 
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where a is the semi major axis and f is the eccentricity. 

where d.. is the half right latitude, so the precession at the perihelion is: 

However, the UFT papers contain numerous refutations of EGR, so the above result IS 

obtained to exemplify the method only. Note carefully that the method of successive 

approximations given by Marion and Thornton { 1 - 41}, produces a different result: 
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and that method has been criticised severely in the UFT papers. It is pointless to claim as in 

the standard model that EGR is precise, because precessions in the solar system are 

exceedingly small in magnitude and are extracted using Newtonian methods from 

precessions caused by other planets. EGR is applied inconsistently only to that part of the 

precession that remains after the "Newtonian filtering" of the effect of other planets has been 

applied. This has been pointed out on the net by Myles Mathis, and a UFT paper devoted to 

the subject. The theory of precessions should be applied to systems in which there is no 

extraneous influence. 

Now consider the ECE2 force equation of universal gravitation: 

f -
where is the Newtonian gravitational potential energy: 
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and where ~ is the vector spin connection that transforms the theory from Galilean 

covariance to ECE2 covariance, a type of general covariance { 1 - 42}. In immediately 

preceding papers it has been shown that the magnitude of the spin connection is: 
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and originates in fluctuations of spacetime (synonymous with "aether" or "vacuum"). For 

example: 

where SJ_ o is a characteristic frequency. The force due to vacuum fluctuations is: 



and a tensorial Taylor series gives the isotropically averaged magnitude of the vacuum force: 
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as shown in recent papers. 
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If a negative spin connection vector is used then: 
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Comparing Eqs. ( S ) and ( ~ \ ) shows that the Einsteinian general relativity is a 

special case ofthe ECE2 covariant Eq. ( d.\ ). EGR is defined by the choice: 

q~ - ~cJ.~ 
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usmg: 

Using the so called "Schwarzschild radius" of the standard model: 



it follows that: 

For a nearly circular orbit: 

where r is the radius of the orbit, so in this approximation: 
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For the earth's orbit: ~ 

so the isotropically averaged vacuum fluctuation is about seven orders 

of magnitude smaller than the radius of the orbit. 

From Eqs. ( \\ ) and ( ~ ) the precession ofthe perihelion in EGR is the 

special case: 

and the precession of the perihelion is due to the isotropically averaged vacuum fluctuations, 

which are also the origin of EGR, a major advance in understanding. 

EGR is a particular case of: the ECE2 force equation: 
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but there are major flaws in EGR because of its omission <?ftorsion. ECE2 correctly 

considers torsion. So no great importance can be attached to Eq. ( ~:;)_ ), it is used only for 



the sake of illustration. The philosophically and mathematically correct perihelion 

precession due to Eq. ( ~ \ ) used in the low eccentricity approximation is calculated as 
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If it is assumed that: 

--
as in some previous UFT papers, then: 

and for 

• it follows that: 

which is the apsidal angle for a static ellipse in which the apsides are fixed, one does not 

precess with respect to the other. This is a useful check on the correctness of the result ( .>~ ). 

For small precessions the spin connection is very small, so: 
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and: 

The apsidal angle is therefore: 

Using Eq. ( \ S: ): 
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so the precession is due to vacuum fluctuations, Q.E.D. 

In the limit of an exactly circular orbit: 

E-=- D -(tJ) 

so the perihelion: 
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For an exactly circular orbit: 

so from Eq. ( '-td.. ): 
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As described in Note 403(2) the ECE2 covariant force equation ( \s ) of 

universal gravitation can be transformed into two scalar equations: 
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with the force magnitude: 
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This procedure gives the orbital equation: 
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in plane polar coordinates, the vacuum corrected Binet equation, together with the equation 

of conservation of angular momentum: 
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The orbit from Eq. ( t; \ ) is given by Maxima as: 
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in which: 
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In the limit of zero spin connection, Eq. ( 'S~ ) becomes the Newtonian: ( ~\ 
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where H, the hamiltonian, and L the angular momentum, are constants of motion. Eq. ( SS) 

then gives the conic section: 

i -C~) \ 

\ +feo.Scf 

with half right latitude: 
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the eccentricity: 
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Therefore the orbit from Eq. ( Sb) is a small perturbation of a conic section. 



The apsidal method shows that the perturbation is a precession of the perihelion. Using a 

binomial expansion as in Note 403(8), it can be shown that the orbit precesses by: 
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Comparing Eqs. ( 4-}) and ( b () ) gives the equation: 

which is an integro differential equation for the isotropically averaged vacuum fluctuation 
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The precession can also be found by integrating Eq. ( S3 ) numerically, and 

measuring the precession graphically. 

3. NUMERICAL AND GRAPHICAL DEVELOPMENT 

Section by co author Horst Eckardt. 
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3 Numerical and graphical development

The orbital precession in near-circular approximation was given by Eq. (60).
By the relations (57-59) for circular orbits, only the constants α (half right
latitude) and a (semi major axis) are left as input parameters. The integral
depends on the quadratic mean fluctuation radius 〈δr · δr〉. If we assume that
this is constant, we can compute the precession angle per quadratic fluctuation:

∆φ

〈δr · δr〉
≈ 2

3

√
α

∫ umax

umin

u3 log (u)(
−αu2 + 2u− 1

a

) 3
2

du (63)

where u = 1/r is the inverse radius. The minimum and maximum radius are

rmin = a(1− ε), (64)

rmax = a(1 + ε). (65)

The semi major axis is

a =
α

1− ε2
(66)

from which the bounds of integration follow:

umin =
1

rmax
=

1− ε2

α (ε+ 1)
=

1− ε
α

, (67)

umax =
1

rmin
=

1− ε2

α (1− ε)
=

1 + ε

α
. (68)

We carried out numerical solutions of the integral (63), using a model system
with α = 1 and ε = 0.3. The integrand has been graphed in dependence of
u in Fig. 1. As can be seen, it has infinities (poles) at umin and umax. So a
numerical integration is not trivial. The result, the ratio ∆φ/〈δr · δr〉, obtained
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from Maxima routines, is shown in Fig. 2 in dependence of the eccentricity ε.
Obviously this function does not approach zero for ε → 0. To obtain ∆φ → 0,
it is therefore required that 〈δr · δr〉 → 0 can be seen from Eqs. (60) or (63).

Another interesting point is the behaviour of the orbital function (53) which
is an extension of the Newtonian orbital integral (55) for a non-vanishing spin
connection. For ωr = 0, Eq. (53) turns into (55). As can be seen from the
graphical representation of the integrand (Fig. 3), the integrand diverges at the
integration boundaries. When ωr is finite, the definition range of the integrand
is shifted to higher u values, i.e. smaller radii. It is clear from the apsidal
method that the change in the ellipse is a precession, because the apsidal angle
is no longer π.

Finally we calculate the isotropically averaged vacuum fluctuation radius for
the planet Mercury. The precession angle per orbit is (see UFT 391):

∆φ = 5.019 · 10−7rad. (69)

From Eq. (63) follows with a = 57, 909, 050 km and ε = 0.205630:

∆φ

〈δr · δr〉
= 4.88220 · 10−20 rad

m2
. (70)

This gives a fluctuation radius of

〈δr〉 =
√
〈δr · δr〉 = 3206 km (71)

which is much smaller than the orbital radius of Mercury. It is a bit more than
twice the diameter of the sun.

Figure 1: Integrand of Eq. (63) for a model system.
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Figure 2: Ratio ∆φ/〈δr · δr〉 in dependence of orbital parameter ε.

Figure 3: Integrands of Eq. (53) for different ωr values.
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