
ORBITAL PRECESSION AND SHRINKAGE FROM FRAME ROTATION. 

by 

M. W. Evans and H. Eckardt 

Civil List and AlAS I UPITEC 

www.aias.us. www.upitec.org, W\Vw.et3m.net. www.archive.org, www.webarchive.org 

ABSTRACT 

It is shown that in its classical limit the ECE2 covariant theory of orbits produces 

orbital precession straightforwardly as a direct result of de Sitter rotation. When the angular 

acceleration of frame rotation is non zero, the orbit can shrink and precess. Therefore the 

main features of the Hulse Taylor binary pulsar, precession and shrinkage, are produced in the 

classical limit of ECE2 theory without use of gravitational radiation. The precession of the S2 

star system is produced in terms of the angular velocity of frame rotation. The Einsteinian 

general relativity (EGR) fails by an order of magnitude in the S2 star system. 
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1 INTRODUCTION 

In recent papers of this series { 1 - 41} it ha~ been shown that de Sitter frame 

rotation of the plane polar coordinates leads to several interesting effects, notably the 

definition of the spin connection and vacuum force. In Section 2 it is shown that the de Sitter 

rotation produces orbital precession, and orbital shrinkage when the angular acceleration of 

frame rotation is also zero. These are the main features of binary pulsars such as the Hulse 

Taylor binary pulsar. In the classical limit ofECE2 theory these features are produced without 

having to postulate gravitational radiation. The same rotating frame theory in its classical 

limit can accurately produce the precession of the S2 star system when the Einsteinian general 

relativity (EGR) fails completely by an order of magnitude. 

This paper is a short synopsis of extensive calculations contained in the notes 

accompanying UFT413 on www.aias.us. Note 413(1) gives an expression for orbital 

shrinkage in terms of the angular acceleration of de Sitter rotation. Note 413(2) gives the 

vacuum force and isotropically averaged fluctuation in terms of the spin connection produced 

by de Sitter rotation. Note 413(3) is a simplification ofthe orbital shrinkage theory. Notes 

413(4) and 413(5) give the hamiltonian and lagrangian theory in the observer frame. Note 

413(6) gives the orbital shrinkage theory, Note 413(7) gives the Cartan torsion and force due 

to de Sitter rotation and Note 413(8) gives a simple transformation of coordinate proof of 

orbital precession and shrinkage. 

Section 3 is a numerical and graphical analysis. 

2. PRECESSION AND SHRINKAGE FROM DE SITTER ROTATION. 

Precession and shrinkage are obtained the well known de Sitter coordinate 

transformation: 
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Eq. ( 5 ) is the conic section: -

which is a precessing ellipse. The precession per orbit of Jff radians is: 

c..:>,T. 

The half right latitude of the ellipse is the constant of motion: 
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and its ellipticity is the constant of motion: 
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The theory explains the precession of the S2 star in terms of the simple equation ( \ ~ ), in 

terms of the angular velocity G.;\ of de Sitter rotation and the timeT taken for one orbit 

of 'lt( radians. The Einsteinian general relativity (EGR) fails completely to describe the 

precession of the S2 star. EGR fails by a factor ten, so the Einstein theory is refuted 

experimentally, to be replaced by ECE and ECE2. 

The semi major axis of the orbit is { 1 - 41}: 
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In consequence the semi major axis shrinks to zero: 

The time taken for one orbit of ~~radians for example is T, so after one orbit: 

r 
and the hamiltonian has increased to: { i .,-r~))- ~~~ _()0 

and is a constant of motion: 
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After an infinite number of orbits the hamiltonian is infmite and the orbit has shrunk to a 

point. 

Kepler's second law is: 
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where A is area, so the areal velocity is constant. It follows that: 

The de Sitter rotation is enough to explain the shrinking of an orbit without any use of EGR 

and gravitational radiation, Q.E.D. Kepler's first law is Eq. ( \\ ) and Kepler's third law 

is the direct result of: 

so: 

The area of the ellipse is: 

and the semi minor axis is: 

Here cJ.. is a constant of motion so as a shrinks to zero so does b. Kepler's third law from 

Eqs. ( \3 ), ( \ S ) and ( \ b ) is: 

so 
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The time T taken for one orbit is zero when the orbit has shrunk to a point. 
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In the coordinate system ( r, T ) the Euler Lagrange equations are: 
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Eq. ( ) \ ) gives the Leibnitz equation modified by frame rotation: 
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and in general the angular acceleration is not zero. Therefore: 

Since L is a constant of motion the radius r must decrease as t increases as shown earlier in 



this section using a different argument. As described in detail in Note 413(1) the rate of 

shrinkage can be calculated from: 
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Various models can be used for the angular velocity of frame rotation as in Note 413( 1 ). 
I 

The fundamental kinematics of the frame ( r, f ) are developed in Note 
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This equation is expressed in terms of the spin connection ~by using: 

-o-- v~/rl~ + n...Q, £ -(>~ 

• 
.. . ~ 

~\ -~<'f 

< 
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is the gravitational potential. 

Therefore the spin connection has been defined by the de Sitter rotation ( 'l. ). 
It follows as in Note 413(5) that the spin connection is: ·· 
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and that this results from the frame rotation: 

As in Note 413(7) the Cartan torsion associated with the spin conenction ( '5'1) results in 

the acceleration due to gravity: 
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which can be developed as in recent UFT papers in terms of vacuum fluctuations <b \ . It 

follows that the total force is: 
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So the total force is: 

and the spin connection is: 
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In the limit: 

it follows that 

self consistently, ~ 

The vacuum force is ubiquitous and gives rise to the anomalous g factors of elementary 

particles, the Lamb shift and the Casimir effect. The same vacuum force gives rise to orbital 

precession and shrinkage. 

3. NUMERICAL ANALYSIS AND COMPUTATION 

(Section by Dr. Horst Eckardt) 
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3 Numerical analysis and computation

3.1 Change of radius

According to Eq. (45), the assumed change of radius dr/dt can be expressed by

dr

dt
= −

r
((

d2

dt2ω1

)
t+ 2 d

dtω1 + d
dtω

)
2
((

d
dtω1

)
t+ ω1 + ω

) . (71)

For a graphical representation, the angular velocity ω has been approximated
by the classical value

ω =
L

mr2
(72)

with a constant angular momentum L. The radius function has been set to the
elliptic orbit

r =
α

1 + ε cos(φ+ ω1t)
. (73)

Thus the term dω/dt in Eq. (71) can be computed directly from (73), giving
a quite complicated expression. This can be evaluated for several model frame
rotation speeds ω1 as listed in Table 1.

The results are graphed in Figs. 1-4. Since r depends on the angle φ, we
have plotted two curves for the extrema of r, appearing at angles 0 and π. For
a decaying exponential function (Fig. 1) this gives an increase in orbital radius.
An exponentially growing ω1 leads to a radial shrinking (Fig. 2) with a phase
shift for both angular positions. A hyperbolic function gives a radial increase
again (Fig. 3), while a simple linear function leads to shrinking orbits in a wide
range of time (Fig. 4).
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No. ω1

1 ω0 exp(−at)
2 ω0 exp(at)

3 a/(t+ c)

4 a t

Table 1: Models of frame rotation for evaluating Eq. (71).

Figure 1: Function dr/dt for model 1 auf Table 1.
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Figure 2: Function dr/dt for model 2 auf Table 1.

Figure 3: Function dr/dt for model 3 auf Table 1.
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Figure 4: Function dr/dt for model 4 auf Table 1.
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3.2 Numerical solution of Lagrange equations

The equations of motion (39,40) have been solved numerically for the canonical
variables (r, φ) where φ is obtained from the frame rotation

φ′ = φ+ ω1t. (74)

These are the Lagrange equations obtained from the kinetic energy

T =
m

(
r2

((
d
dtω1

)
t+ d

dtφ+ ω1

)2
+
(

d
dtr

)2)
2

(75)

and the potential energy

U = −mMG

r
(76)

with variables described in section 2. It should be noted that the equations of
motion contain the time parameter t explicitly, therefore there is no invariance
of the equations when shifting the time parameter.

We used two models for the frame rotation, in the first case

ω1 = −a exp(−b t). (77)

with positive parameters a and b. All parameters within the calculation were
chosen for a model system so that significant frame rotation effects appear.
The orbit shows significant precession (Fig. 5). The constant of motion is the
angular momentum

L = mr2φ̇′ = mr2(φ̇+ ω1 + ω̇1 t). (78)

In Fig. 6 This angular momentum constant (L) is graphed together with the
Newtonian angular momentum

L(Newton) = mr2φ̇. (79)

It can be seen that L is a constant of motion while L(Newton) is not.
The radialspin connection Ωr was derived in Eq. (57). Since this form

requires knowledge about the value of L which is not an input parameter of the
calculation, we use the alternative form

Ωr = − r2

MG
(ω̇1t+ ω1)

(
ω̇1t+ 2φ̇+ ω1

)
. (80)

as derived in note 413(5). Its graph is presented in Fig. 6 and shows oscillations
stemming from the angular velocity ω = φ̇. There is no shrinking in orbital
radius or orbit period.

The second model for the frame rotation is a simple linearly increasing func-
tion

ω1 = a t. (81)

Since ω1 is opposed to the direction of the orbiting mass on the ellipse, there is
a value of t where ω1 exceeds the angular velocity ω of the mass. Consequently,
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the direction of motion reverses, leading to very exotic orbits as presented in
Fig. 8. Nonetheless, the constant of motion L is preserved as can be seen from
Fig. 9. Due to the exotic orbit, the Newtonian angular momentum oscillates
strongly and changes direction multiply (see zero crossings). Similarly, the spin
connection Ωr (Fig. 10) oscillates strongly in the negative range. From other
models of ω1 we found that Ωr can also take positive values.

In this second model, ω1 grows beyond all limits so that we would expect a
drastic shrinking of orbit. The observed maximum radii and periods per single
orbit were extracted from the calculation, interpolated to increase precision, and
compiled in Table 2. It can be seen that both quantities are constant within
calculational precision of 4-5 digits. The explanation is found when considering
the single angular terms of the constant of motion (78), see Fig. 11. The terms
ω1 and ω̇1t (red/green line) are positive and identical according to Eq. (81).
After the first oscillation, both terms exceed the bottom part of ω (purple line).
As a consequence, ω sinks below zero so that the sum of all three terms gives
the same sum curve (blue line) all over the time. The blue line corresponds to
1/r2 so that L remains constant. Since the blue curve does not change from
oscillation to oscillation, there is no change in orbital radius. The reversal of
angular motion is a consequence of keeping L constant.

In total, the dynamics of the system works in a way that orbital parameters
rmax and Torbit are conserved. In other words, frame rotation leads to strong
precession and even reversing of orbital motion, but the basic parameters of the
orbit are maintained. Other non-classical effects will next be investigated for
producing orbital shrinking.

rmax Torbit

3.175345 5.993880
3.175353 5.993257
3.175360 5.993402
3.175367 5.993437
3.175374 5.993444
3.175381 5.993456
3.175388 5.993469
3.175394 5.993483
3.175402 5.993503

Table 2: Maximum orbital radii and orbit periods of model (81).
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Figure 5: Precessing orbit of model (77).

Figure 6: Angular momenta of model (77).
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Figure 7: Spin connection Ωr of model (77).

Figure 8: Precessing orbit of model (81).
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Figure 9: Angular momenta of model (81).

Figure 10: Spin connection Ωr of model (81).
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Figure 11: Single terms of constant of motion (81).
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