
ABSTRACT 

THE EVANS ECKARDT EQUATIONS OF MOTION 

by 

M. W. Evans and H. Eckardt 

The Evans Eckardt (EE) equations of motion are defined and developed in m 

theory. They are of general applicability in all branches of physics and are very fundamental 

because they are based on the well known fact that the hamiltonian and angular momentum 

are constants of motion. They are compared with the lagrangian development of m theory. 

The application of m theory is exemplified with galactic dynamics, in which Einsteinian 

general relativity (EGR) fails completely. The m theory is used to define an effective mass, 

confirming the work of UFT 419, and its Cartesian representation developed; and m theory is 

applied to the Sagnac effect. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 41 } th_e m theory has been developed and 

applied to physics and cosmology. In Section 2 of this paper the Evans Eckardt (EE) 

equations of motion are defined directly from the fact that the hamiltonian (H) and angular 

momentum (L) of any well defined system are constants of motion. The EE equations can be 

applied to all branches of classical, relativistic and quantum physics, to any system in which 

Hand L are well defined in m space, the most general spherically symmetric space. The EE 

equations are compared with the lagrangian methods of immediately preceding papers of this 

UFT series. It is found that the EE equations are more fundamental than the lagrangian 

method. 

This paper is a short synopsis of extensive calculations and computations 

described in the notes accompanying UFT420 on www.aias.us. In Note 420(1) them theory is 

applied to galaxies, in which Einsteinian general relativity (EGR) fails completely and is 

refuted entirely. Them theory produces the shape of any galaxy in terms of them ( r) 

function defined in immediately preceding papers of this series. In Note 420(2) them theory 

is used to define the effective mass of an attracting orbit, and replaces black hole theory in 

this way. In Note 420(3) the Cartesian representation ofm theory is developed. In Note 

420( 4) the m theory of the Sagnac effect is developed. Finally in Notes 420( 5) to 420(7) the 

Evans Eckardt equations are defined and applied to relativistic classical dynamics. They are 

compared with the lagrangian methods of immediately preceding papers and shown to be 

more fundamental. They can be coded up and results produced from them in any branch of 

physics, chemistry and engineering. 

2. DEVELOPMENT OF THE EE EQUATIONS 

The Evans Eckardt equations of motion are: 
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and 

~\L - D -
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where H is the hamiltonian and L the angular momentum of any well defined system in any 

branch of physics. The EE equations are based on the well known fact that H and L are 

constants of motion, and produce force equations from H and L. Consider the coordinate 

system used in immediately preceding papers, ( r\ ' + ), where 

":... ( ----
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In this coordinate system: 

and 

where the generalized Lorentz factor is: 
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Here m is a mass orbiting a mass M and separated from it by a distance mm space. -
In Eq. ( L ): 
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which may be integrated simultaneously to produce forward and retrograde precession of 

orbits. EGR fails entirely to produce retrograde precession. Eqs. ( ~ ) and ( ~ ) define 

shrinking orbits and several other effects described graphically in Section 3. They go well 

beyond the standard model of physics. In Note 420(7) it is shown how the Newtonian force 

equations are defined by the Evans Eckardt equations, in Cartesian and plane polar 

coordinates. In Newtonian physics the EE and lagrangian methods produce the same results, 

as shown in Note 420(9). This is also true in special relativity. 

However, in m theory the EE equations from the hamiltonian ( 4- ) and angular 

momentum ( 5 ) are more fundamental than the lagrangian method. From Eqs. ( 1 ) and 

( \r ): • 
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Now use: 



where 

so: 

and use a Cartesi . an coordmate system in which: 
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to find that the EE equation of motion is: 

Finally use: 
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which correctly reduces to the well known Newtonian orbit force equation in Cartesian 

coordinates: 

in the limit: 
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The vacuum force ofthe EE equation (). \ ) is: 
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where the relativistic total energy of m theory is 



As shown in UFT417 the vacuum force becomes infinite under well defined conditions. 

and the Euler Lagrange equation: 

~ ;i 
$ )(\ 

which in Cartesian coordinates is equivalent to 

~ ('<~ (,') ~ 
The EE equations of motion produce a vacuum force which is twice that produced 

from the lagrangian method. Therefore in m theory the EE equations are the more 

fundamental equations and a lagrangian must be found to give the results of the EE equations. 

One way of finding the correct lagrangian is to add a lagrangian defined by: 

)f, "'l 'i ~~(r\) 
-~ - -------
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The lagrangian: 



gives the EE equation ( } \ ) with the Euler Lagrange equation ( :l ~ ), given the 

constraint equations ( 3> 0 ) and ( ~ \ ). 

It is well known that the weak point of the lagrangian method is that the lagrangian 

must be chosen by inspection. On the other hand the EE equations are well defined from the 

beginning, and are based directly on the fact that H and L are constants of motion. 

A possible solution ofEq. ( ~0 ) is: 

-1\ 
Therefore Eq. ( ~ \ ) is: 
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Therefore: 
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Using: 
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it is found that the constraint equations ( ~O ) and ( ~\ ) are equivalent to: 



• 

which is a small quantity which vanishes self consistently in the non relativistic limit: 

This finding is consistent with the fact that radiative corrections are very small corrections. 

It could be argued that the lagrangian method produces results that are as 

fundamental as those from the EE equations, so results from both methods can be graphed 

and compared directly. However, the procedure that is almost always adopted in physics is to 

choose the lagrangian to give the results of the hamiltonian. There is also a well known 

general theorem linking the hamiltonian and lagrangian: 

\ 

It is considered however that it is possible to use the EE equations for any problem in physics, 

so that the lagrangian method is not needed, and there is no need to choose a lagrangian by 

inspection. 

The EE equations and m theory entirely supercede Einsteinian general relativity. An 

example of this is given in note 420(1), in which it is shown that Newtonian and Einsteinian 

orbit theories fail completely to describe the velocity curve of a whirlpool galaxy. The reader 

is referred to the details in Note 420(1 ). In galaxies the EE equations are used to find the orbit 

function ~ ( /Jf 

Another example is given in Note 420(2), where the EE equations are used in a theory in 

which: 



-
This theory defines an effective attracting mass and confirms the conclusions ofUFT419 

concerning the orbit of the S2 star. This orbit refutes EGR by a factor of a hundred, and is an 

ellipse which is non Keplerian. For details the reader is referred to Note 420(2) in which it is 

shown that m theory gives the most general type of orbit that results in a constant velocity at 

infinite r. In Note 420(3) the Cartesian representation ofm theory is developed, and in Note 

420( 4) it is shown that the Sagnac effect in m theory is: 

... - Lt. 'A( S2. 
Y"f'...l <) v~ 

where ~ \ is the area of the Sagnac ring, _Q_ the rotational angular velocity of the 

platform, and ~\. the time difference for clockwise and anticlockwise light travel. 

Therefore "'-(~can be measured directly in the Sagnac effect. 

3 COMPUTATION OF THE EE EQUATIONS AND GRAPHICS. 
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3 Computation of the equations and graphics

3.1 Comparison between Hamiltonian and Lagrangian method
in plane polar coordinates

The equations of motion have been derived by computer algebra for two coor-
dinate systems of m space: the rest system of the orbiting mass (r1, φ) and the
observer system (r, φ). The equations of motion based on the Hamiltonian have
been derived from

dH

dt
= 0,

dL

dt
= 0 (44)

with the Hamiltonian in the rest system

H = m(r1)γ mc2 − mMG

r1
(45)

and angular momentum in Z direction

L = γ mr21 φ̇. (46)

The generalized Lorentz factor γ is defined in this case by

γ =

(
m(r1)− ṙ1

2 + r1
2φ̇2

c2

)−1/2

. (47)

The equations of motion obtained by computer algebra from (44) are

φ̈ =φ̇ ṙ1

(
1

m (r1)

dm (r1)

dr1
+

GM

γ c2 r12 m (r1)
− 2

r1

)
,

r̈1 =
dm (r1)

dr1

(
− φ̇

2 r1
2

m (r1)
+ c2

(
− 1

γ2 m (r1)
+

1

2

))

− GM φ̇2

γ c2 m (r1)
− GM

γ3 r12 m (r1)
+ φ̇2 r1.

(48)

(49)

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de

1



For the alternative calculation, the Lagrangian is defined by

L = −mc
2

γ
+
mMG

r1
(50)

with the same γ factor (47). The Euler-Lagrange equations give the equations
of motion

φ̈ =φ̇ ṙ1

(
1

2 m (r1)

dm (r1)

dr1
+

GM

γ c2 r12 m (r1)
− 2

r1

)
(51)

r̈1 =
1

m (r1)

dm (r1)

dr1

(
− φ̇2 r1

2

2 m (r1)
− c2

2 γ2

)
, (52)

− GM φ̇2

γ c2
− GM

γ3 r12 m (r1)
+ φ̇2 r1.

For the φ̈ component there is a difference of 1/2 in the first term, compared to
the Hamiltonian solution. For r̈1 there are some more differences. For a clean
mathematical treatment, a Lagrangian had to be found which gives the same
result as (48, 49).

A similar difference is found for the equations of motion in the observer
coordinate system (r, φ). Then we have the γ factor

γ =

(
m(r)− ṙ2 + r2φ̇2

c2 m(r)

)−1/2

, (53)

the Hamiltonian

H = m(r)γ mc2 −
mMG

√
m(r)

r
, (54)

and the angular momentum

L =
γ mr2 φ̇

m(r)
. (55)

Eqs. (44) lead to the equations of motion

φ̈ =φ̇ ṙ

(
1

m (r)

dm (r)

dr

(
2− GM

2γ c2 r
√

m (r)

)

+
GM

γ c2 r2
√

m (r)
− 2

r

)
,

r̈ =
1

2

dm (r)

dr

(
ṙ2 − 3φ̇

2
r2

m (r)
+ c2

(
m (r)− 2

γ2

)
+

GM

γ3r
√

m(r)

+
GMφ̇2r

γ c2m(r)3/2

)

− GM φ̇2

γ c2
√

m (r)
−
GM

√
m (r)

γ3 r2
+ φ̇2 r.

(56)

(57)
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The Lagrangian

L = −mc
2

γ
+
mMG

√
m(r)

r
(58)

with the γ factor (53) leads to the Euler-Lagrange equations

φ̈ =φ̇ ṙ

(
1

m (r)

dm (r)

dr

(
2− GM

2γ c2 r
√

m (r)

)
(59)

+
GM

γ c2 r2
√

m (r)
− 2

r

)
,

r̈ =
dm (r)

dr

(
−2φ̇

2
r2

m (r)
+ c2

(
m (r)− 3

2γ2

)
+

GM

2γ3r
√

m(r)
(60)

+
GMφ̇2r

2γ c2m(r)3/2

)

− GM φ̇2

γ c2
√

m (r)
−
GM

√
m (r)

γ3 r2
+ φ̇2 r.

The equation for φ̈ is identical to (56) but the equation for r̈ contains less terms
for dm(r)/dr, besides differences in constant factors.

Inspecting Eqs. (57) and (60), we find that the leading term for dm(r)/dr
is that with the factor c2 in the numerator, leading to a behaviour known
from chaos theory as mentioned earlier. The results are extremely sensitive
to dm(r)/dr. Assuming a realistic case with

γ ≈ 1, m(r) ≈ 1, (61)

the leading factor of dm(r)/dr is approximately

−dm (r)

dr

c2

2
(62)

in both equations. Therefore, for realistic systems as the S2 star, both sets of
equations lead to the same results. This has been checked numerically. For the
example shown in Fig. 10 of UFT419, both orbit plots are indiscernible. Test
with model parameters always gave the same result, even in ultrarelativistic
cases. This may indicate that the important terms of the Hamiltonian and
Lagrangian method are equal in their effect.

3.2 Comparison between Hamiltonian and Lagrangian method
in cartesian coordinates

In earlier work we had derived the relativistic Lagrange equations of motion in
cartesian coordinates which are

r̈ =
M G

γ r3

(
ṙ (ṙ · r)

c2
− r

)
(63)
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with position vector

r =

[
X
Y

]
(64)

and its modulus

r =
√
X2 + Y 2. (65)

The γ factor in m space with rest system coordinates X1, Y1 is

γ =

(
m(r1)− Ẋ1

2
+ Ẏ1

2

c2

)−1/2

(66)

with

r1 =

√
X1

2 + Y1
2. (67)

Instead of writing m(X1, Y1) we maintain the the dependence of the m function
in the form m(r1) because m is defined for a spherically symmetric spacetime.
Hamiltonian and angular momentum then read

H = m(r1)γ mc2 − mMG√
X1

2 + Y1
2
, (68)

L = γ m (X1Ẏ1 − Ẋ1Y1). (69)

Solving Eqs.(44) gives quite complicated expressions. For m(r1)=m=const. The
solution is

r̈1 =
M G

γ r13c2m

[
−X1Ẏ

2
1 + Y1Ẋ1Ẏ1

−Y1Ẋ2
1 +X1Ẋ1Ẏ1

]
− M G

γ3 r13m
r1. (70)

In the oberver system (X,Y ) we have

γ =

(
m(r)− Ẋ2 + Ẏ 2

c2m(r)

)−1/2

(71)

H = m(r)γ mc2 −
mMG

√
m(r)√

X2 + Y 2
, (72)

L =
γ m (XẎ − ẊY )

m(r)
, (73)

and the equations of motion for constant m(r)=m are

r̈ =
M G

γ r3c2
√

m

[
−XẎ 2 + Y ẊẎ

−Y Ẋ2 +XẊẎ

]
− M G

√
m

γ3 r3
r. (74)

These are equal to Eq. (70) except for the factor m.
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