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ABSTRACT 

The recently inferred m theory, an inference ofECE unified field theory, is 

developed using the Hamilton equations of motion and the Hamilton Jacobi equations, two 

complete formalisms of classical dynamics. It is shown that the Hamilton equations give the 

same vacuum force as the Euler Lagrange equations used in UFT417, giving a rigorous cross 

check of concepts and technique. The Hamilton Jacobi dynamics are used to calculate and 

compute the action for m theory in readiness for quantization. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 41} the Hamilton and Hamilton Jacobi 

dynamics have been developed and applied on the classical level and on the ECE2 level. In 

Section 2 the Hamilton and Hamilton Jacobi equations are applied tom theory and it is 

shown that the vacuum force can be defined as the force due to the most general spherically 

symmetric spacetime (m space). It is shown that the force due tom space calculated with the 

Hamilton equations is the same as the force due to m space calculated with the Euler 

Lagrange equations in UFT417. This is another rigorous demonstration ofthe self 

consistency of concepts and calculations. The Hamilton Jacobi formalism is used to calculate 

the action function in preparation for quantization. In section 3 the calculations are checked 

with computer algebra and the main results presented graphically. 

This paper is a short synopsis ofNote 427(1) posted with UFT427. Notes 427(2) 

onwards are used for UFT428 on the quantization of m theory. 

2. HAMIL TON AND HAMILTON JACOBI EQUATIONS 

Consider the relativistic momentum of m theory: 

in frame ( \\, + ), where {1- 41}: 
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where ~ tJ is the Newtonian velocity. 



It follows that: 

where the generalized Lorentz factor of m theory is: / 
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It follows that the Einstein energy equation in m theory is: ) f.. 0 
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Now define Hamilton's canonically conjugate generalized coordinates to be: 
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The Hamilton equations are: 



From Eq. ( \\ ): 

Now use: 

Let 



to find that: 

Therefore Eq. ( \ ~ ) is confirmed, showing that the force from m space is the same in the 

Hamilton and Euler Lagrange system of dynamics, Q.E.D. The force magnitude is: 

r ~ -r...c"l ~ J~(<~ -- - ~ L (lh'':>(,0).- (:l.~ --r :H·, Y\..u ;') II:> ,)(, 

Therefore the concepts and calculations are rigorously self consistent, and show 

that m space produces a force and energy which is missing from Minkowski spacetime and 

from classical dynamics on the Newtonian level. 

The Hamilton equation ( \~ ) gives: 
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where: 

Therefore: ~\ 

where we have used: 
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Therefore: 



which is the correct definition of relativistic momentum, Q.E.D. The Hamilton equations 

applied tom theory are rigorously self consistent, Q.E.D. 

To extend ~/heory ;o plane pol~ coord(inat:s use: t \ \ j i_ .t. \ _ ( J.R \, 
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where: 
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is the conserved angular momentum. The second Evans Eckardt equation is: 
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The Hamilton equation ( \ \.r) gives: 
• 

where the hamiltonian is: 

It follows that: 

L e. 



which is the angular momentum of m theory found by an Euler Lagrange analysis in 

UFT417, Q.E.D. 

The m theory in Hamilton dynamics and Euler Lagrange dynamics is rigorously self 

consistent, both theories give the same results. This is a rigorous check of the self consistency 

of concepts and calculations. 

The Hamilton Jacobi equations of m theory are found from Eq. ( ~.S ) using: 

JS ~f - ~ ~(?1.) 
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where S is the action function: 
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These equations are integrated by computer in Section 3 to give the action functions j ( 
and Sf· This is a route towards the quantization of m theory because the quantum of 

action is ~and is the very basis of quantum mechanics. 
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3 Additional calculations and graphics

3.1 Hamilton equations of central motion im m theory

We have evaluated the Hamilton equations for m theory in two formulations
of the Hamiltonian. This is done in analogy to UFT 426, Tables 2 and 3. We
worked out the Hamilton equations of central motion in an inertial frame and in
a plane polar coordinate system. The general form of the Hamilton equations
is

q̇i =
∂H

∂pi
(40)

ṗi = −∂H
∂qi

(41)

where qi are the canonical or generalized coordinates and pi are the conjugate
canonical momenta. The index i refers to the coordinate components. The
radial coordinate r has to be replaced by r1 in m theory as defined in Eq. (2).
In polar polar coordinates we have

q1 = r1 =
r√

m(r1)
, (42)

q2 = φ, (43)

p1 = m q̇1, (44)

p2 = γ mq21 q̇2, (45)

with the generalized γ factor

γ =

m(q1)−
p21 +

p22
q21

m2c2

− 1
2

. (46)
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The resulting Hamilton equations written with the γ factor are listed in Table 1.
Compared to the inertrial case, the angular coordinate gives additional terms
for q̇2 and ṗ1. We find the typical terms of m theory with factors of m(q1) and
dm(q1)/dq1. Similar effects are found for the alternative Hamiltonian of Table 2
where the characteristic function ε1 appears instead of the γ factor as already
discussed in UFT 426.

The equations of Table 1 have been solved numerically for a model system.
Fig. 1 shows the orbit for m=1. There is a negative precession for the parameters
used. The same parameters and initial conditions were taken in the calculation
graphed in Fig. 2, using an exponential m function as used in previous papers.
The type of orbit changes to strong positive precession. As observerd earlier,
the deviations from Newtonian theory manifest themselves by several kinds of
precession.

system γ and Hamiltonian Hamilton equations

inertial γ =
(

m(q1)− p1
2

m2 c2

)−1/2

q̇1 = m(q1)γ3 p1m
H = m(q1) γmc2 − GMm

q1
q̇2 = 0

ṗ1 = dm(q1)
dq1

γmc2
(

m(q1)γ
2

2 − 1
)
− GMm

q12

ṗ2 = 0

polar coord. γ =
(

m(q1)− p21+p
2
2/q

2
1

m2 c2

)−1/2

q̇1 = m(q1)γ3 p1m
H = m(q1) γmc2 − GMm

q1
q̇2 = m(q1)γ3 p2

mq21

ṗ1 = dm(q1)
dq1

γmc2
(

m(q1)γ
2

2 − 1
)

+m(q1)γ3
p22
mq31
− GMm

q12

ṗ2 = 0

Table 1: Hamilton equations of m theory in inertial frame and plane polar
coordinates.

system ε1 and Hamiltonian Hamilton equations

inertial H =
√

m(q1)
√
c2 p12 +m2 c4 − GMm

q1
q̇1 =

√
m(q1)

c2p21+m
2c4
c2 p1

q̇2 = 0

ṗ1 = 1
2
dm(q1)
dq1

√
c2p21+m

2c2

m(q1)
− GMm

q12

ṗ2 = 0

polar coord. ε1 =
(
c2
(
pφ

2

q12 + p1
2
)

+m2 c4
)−1/2

q̇1 =
√

m(q1)ε1c
2p1

H =
√

m(q1)

√
c2
(
p22

q12 + p12
)

+m2 c4 q̇2 =
√

m(q1) ε1c
2p2
q21

−GMm
q1

ṗ1 = −dm(q1)
dq1

1

2ε1
√

m(q1)

+
√

m(q1) ε1c
2 p2

2

q13 − GMm
q12

ṗ2 = 0

Table 2: Hamilton equations of m theory in inertial frame and plane polar
coordinates, alternative form.
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3.2 Computation of the function of action Sr in m theory

The Hamilton-Jacobi equation (38) of m theory has been solved similarly as
described in UFT 426. By m theory only a factor of m(q1) is multiply added to
the expressions derived in the preceding paper. We could simplify the solution
method and avoid a quartic equation. The resulting differential equation is

∂Sr(q1)

∂q1
= ±

√
− (c4m2 q12 + L2 c2) m(q1) + E2 q12 + 2EGMmq1 +G2M2m2

cq1
√

m(q1)
.

(47)

This equation is not analytically solveable with a general m(q1). We graphed
two solutions with constant m(q1) = 1 and m(q1) = 0.99, see Fig. 1. For
m(q1) = 1 the same result as found for UFT 426 comes out. For m(q1) = 0.99
the results differ significantly, the orbital radius nearly doubles. We find as
before that the results depend very sensitively on the form of m(q1). The effects
are similar as in chaos theory where very small changes of the equations of state
effect large deviations of the resulting trajectories.

Figure 1: Orbit of central motion from Hamilton equations, m=1.
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Figure 2: Orbit of central motion from Hamilton equations, exponential m
function.

Figure 3: Solutions for the action Sr(q1) of m theory.
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