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ABSTRACT 

The relativistic quantization of m theory is developed along the lines of Dirac 

quantization. Using the H atom as an example it is shown that the nature of m space 

profoundly affects all aspects of the quantization: the main energy levels; the Zeeman effect, 

the second order effect in the vector potential, and the fine structure due to spin orbit 

interaction. Therefore the spectrum of an H atom in a strong gravitational fiield will be 

changed, and in general there will be radiative corrections due to energy from m space. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 41} the ECE unified field theory in the most 

general spherically symmetric space ( m theory) has been developed on the classical level 

using the three classical and complete dynamical systems: Euler Lagrange, Hamilton and 

Hamilton Jacobi. These systems have been augmented by a new system of classical dynamics, 

the Evans Eckardt system based on the constancy of the hamiltonian and the angular 

momentum. In Section 2 the relativistic quantization of m theory is developed along the lines 

of the well known Dirac quantization in flat or Minkowski spacetime. In the general, 

spherically symmetric, spacetime it is expected that radiative corrections will appear, because 

m theory is known on the classical level to produce a new source of energy which is not 

present in flat spacetime or its Newtonian limit. In preceding papers it has been shown that 

the energy from m space is precisely the same in the Euler Lagrange and Hamilton systems. 

On the classical level it gives rise to the spin connection and is a property of m space. One 

example of m space is the space of Einsteinian general relativity (EGR), in which the m ( r ) 

function is the so called Schwarzschild function. This shows that the albeit obsolete EGR 

gives energy from a well defined m space. This energy gives rise to the well known effects of 

general relativity, for example light deflection by gravitation, orbital precession and so on. It 

also gives rise to the well known radiative corrections such as the anomalous g factor of the 

electron and the Lamb shift. The ECE theory greatly improves and extends EGR in 

approximately seven hundred papers and books produced since 2003 and greatly develops the 

theory of the radiative corrections. Section 3 is an analysis and graphical development by co 

author Horst Eckardt. 

This paper is a short synopsis of extensive calculations in the notes accompanying 

UFT427 and UFT428 on www.aias.us. Only a small part of these calculations are used in the 

final paper and the notes should be regarded as being part ofthe complete paper. Note 427(1) 



has been used for UFT427 on the Hamilton Jacobi formulation ofm theory on the classical . 
level. Note 427(2) is a comparison ofthe Hamilton J<:cobi and Schroedinger equations ofm 

theory. Note 427(3) develops quantization schemes form theory. Note 427(4) reviews the 

well known Dirac theory and initiates its development into relativistic quantum m theory. 

Note 427(5) develops the hamiltonians of relativistic quantum m theory in preparation for 

future work. 

2. RELATIVISTIC QUANTIZATION ofm THEORY 

First review the Dirac theory, which applies in Minkowski sapce or in the space 

ofECE2 with finite torsion and curvature. The hamiltonian is: 

- (0 

where E is the total relativistic energy and U the potential energy. Here: 
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and where v is the Newtonian linear velocity. The relativistic momentum is: 
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In the H atom the potential energy between electron and proton is: 
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where e is the charge on the proton, f 0 is the vacuum permittivity and r is the magnitude 



of the distance between the electron and proton. Finally c is the speed of light in vacuo and m 

the mass of the electron. 

Consider: 

and write it as: 

It follows that: 
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The hamiltonian may be expressed as: 
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and is also defined by: 
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The well known Dirac approximations are: 
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so the hamiltonian becomes: 

Assuming that: 

it follows that: 

It follows that the hamiltonian minus the rest energy (the reduced hamiltonian) is: 
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and in the approximation ( \ S" ) reduces to the Newtonian hamiltonian: 
') 

Dirac introduced the SU(2) basis to find that: 
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In the presence of a magnetic field the minimal prescription gives: 
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is the well known Dirac hamiltonian. At ths point the theory is quantized using: 
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where i is the wave function. 

The Dirac theory gives the main energy levels of the H atom, the Zeeman effect, 

and the fine structure due to spin orbit interaction, but gives an electronic g factor of exactly 

two and no Lamb shift. 

In m theory the hamiltonian ( \ ) becomes: 

where the generalized Lo~tz :tor i'l ~ l \0 _ ~ ~") j I J :l _ (;) ~ 

in a coordinate system defined by: 

) 

so: 

It follows as in Note 427(4) that the hamiltonian is: 
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Now apply the Dirac type approximations: 
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From Eqs. ( )""'-) and ( ~ 0 ) 
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It follows from th n· e Irac type approximation that: 

~ -=- ~ (,0: f~ 
}r... (<)I/)\\.<.-., -\A. 

so in frame ( r, 

where: 



and if 

'/) ."') --

\-\ r-- ~ ( <) t/> -\Jy,_ ) 1\-V - ( ~'\) 
In the SU(2) basis: 

\ 0 . {) \_1\- ---\ \ - l"" - J.n..v - ( '*•) 

\I) ., 

and reduces correctly to the Dirac th=- ~ • ~ 1._ -\- t( 0 ~ \ ~ •1 T- VI-~ ;-- l:fo 

\-\ .,.._ ( <) _., ", ;). "' - d.,..._v ) _ ( u. ~ 
Q.E.D. 



. ! c. !l) -(~ 
- (tr:) 

~ · (_f -z&) ~(0 

Eq. ( '-\:S ) is the free particle kinetic energy; Eq. ( ~ ) is the Zeeman effect hamiltonian; 

Eq. ( ""£. ) is the second order hamiltonian and Eq. ( 't(, ) is the fine structure hamiltonian. 

In m theory these well known hamiltonians of Dirac theory ae developed as in Note 

427(5) into: ( ) \1 \-\ -\-- \-1 - ( \0\ 
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It is seen that each hamiltonian is changed by m ( r ) \ } ~ . Therefore the spectral structure of 

atoms and molecules depends on them space and them ( r) function. For example the g 

factor ofthe electron is no longer exactly two as in the Dirac theory, and there should be a 

Lamb shift. In a very intense gravitational field surrounded by an atmosphere containing 



atoms and molecules, their spectra should be changed in several interesting ways. 

For example the energy levels of the H atom are changed by m theory. In the Dirac 
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theory these energy levels are given by: 

where: 
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and the energy levels are the expectation values: 
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where n is the principal quantum number: 
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and where the reduced mass if electron (m \ ) and proton (m ') ) is: 

Here ~ are the well known hydrogenic wave functions used in several previous UFT 

papers. 

In m theory the energy levels of the H atom are given by: 



where: 

So on quantization: 
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so each energy level is changed in a different way, giving rise to a new type of spectroscopy. 

The hamiltonians will be developed in future work 
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3 Numerical calculations and graphics

The total energy of the Hydrogen atom was evaluated for different kinds of
m functions. The total energy of relativistic m theory is given by Eq. (63),
consisting of three parts:

E = E1 + E2 + E3 (64)

with

E1 = − ~2

2m

∫
ψ∗ 1

m(r)
1
2

∇2ψ dτ, (65)

E2 = − ~2

2m

∫
ψ∗∇

(
1

m(r)
1
2

)
·∇ψ dτ, (66)

E3 = − e2

4πε0

∫
ψ∗ m(r)

1
2

r
ψ dτ. (67)

E1 and E2 are the terms of kinetic energy, while E3 describes the potential en-
ergy contribution. We evaluate the integrals in the approximation of using the
non-relativistic wave functions of Hydrogen as obtained from the Schrödinger
equation. The wave functions are a product of radial functions (Rnl) and spher-
ical harmonics (Ylm) as is well known. Omitting the quantum number indices
we have

ψ(r, θ, φ) = R(r)Y (θ, φ). (68)

The spherical harmonics obey the normalization condition∫
Y ∗Y dω = 1 (69)
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for equal quantum numbers, where dω is the differential two-dimensional surface
element. The Laplace operator ∇2 in E1 produces angular derivatives. These
can be separated from the radial parts because the Laplacian is additive in its
coordinate dependence:

∇2 = ∇2
r +∇2

θ,φ. (70)

Therefore E1 can be written as

E1 =− ~2

2m

∫
R∗Y ∗ 1

m(r)
1
2

(
∇2
r +∇2

θ,φ

)
RY dτ (71)

=− ~2

2m

∫
R∗ 1

m(r)
1
2

(
∇2
rR
)
r2dr (72)

− ~2

2m

∫ (
Y ∗∇2

θ,φY dω
)
R∗ 1

m(r)
1
2

Rr2dr (73)

where we have used the normalization condition (69). Thus the angular integra-
tion has been separated from the radial integrations. The angular integration
can be executed analytically while the radial integration can be performed either
analytically (if possible) or numerically.

Concerning E2 the integral contains a product of two gradients. Because the
first gradient is zero in the components for θ and φ, there is only a product of
radial gradients left, giving

E2 =− ~2

2m

∫
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∂r

(
1
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1
2

)
∂R
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r2dr. (74)

The potential energy simplifies to

E3 = − e2

4πε0

∫
R∗ m(r)

1
2

r
R r2dr. (75)

For a constant m function, the integrals can be solved analytically. Using atomic
units, the ground state energy of Hydrogen is -1/2 Hartree units. The factor
m(r) := x then leads to expressions of

E(n = 1) =
1

2
√
x
−
√
x, (76)

E(n = 2) =
1

8
√
x
−
√
x

4
, (77)

E(n = 3) =
1

18
√
x
−
√
x

9
, (78)

giving -1/2 for x = 1 as expected for example. The dependence of E from x is
graphed in Fig. 1. The curves differ for the principal quantum number n only.
Interestingly, all curves have the same zero crossing at x = 0.5 but it has to be
kept in mind that the calculation was done with the undistorted wave functions.
For large deviations of m from 1, the wave functions will be different.

For a non-constant m, the radial integrals have to be evaluated numerically.
We consider two principal cases, where m(r) ≤ 1 and m(r) ≥ 1. It turned

2



out that the Schwarzschild-like m function is not suited for these calculations
because it reaches to negative m valued near to r = 0, which leads to imaginary
parts of the integrands. The exponential function is much better suited. For
the two cases we used:

m1(r) = 2− exp
(

log(2) exp(− r
R

)
)

for m(r) ≤ 1, (79)

m2(r) = exp
(

log(2) exp(− r
R

)
)

for m(r) ≥ 1. (80)

The m functions of both cases are graphed in Fig. 2. The constant R is used
as a parameter for the calculation. The resulting total energies are graphed in
Figs. 3 and 4 for the case of m(r) ≤ 1. For R = 0 we have the non-relativistic
results of the Schrödinger equation with m(r) = 1. There is a general rise
of energies for increasing R, i.e. when m takes values below 1. The changes
are most significant for the 1s state. There is a dependence on the angular
quantum number l which is not there in the non-relativistic case, producing a
finestructure.

For m(r) ≥ 1 the effect is reversed, there is a deepening of energy levels,
again with a fine structure splitting. This can be seen from Figs. 5 and 6.
From relativistic local-density calculations of atomic binding energies it is known
that energies of deep core states often come out too small. This could hint to
relativistic effects of m theory where m(r) > 1 at the core position. From our
experience in astronomy (S2 star) it is more plausible that m(r) < 1 near to the
gravitational centre. Further experience has to show if there is such a difference
between macro- and microcosm.

In a relativistic calculation with spin-orbit coupling (Dirac theory), the en-
ergy levels of 2s1/2 and 2p1/2 are identical. By m theory, however, there is a
splitting of these levels which is generally attributed to vacuum effects (Lamb
shift). Therefore m theory seems to produce the most general fine structure of
atomic spectra.
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Figure 1: Total energy of H in dependence of m(r)=const.

Figure 2: m functions of type m(r) ≤ 1 and m(r) ≥ 1.
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Figure 3: Total energy of H in dependence of R for m(r) ≤ 1, n = 1, 2.

Figure 4: Total energy of H in dependence of R for m(r) ≤ 1, n = 3.
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Figure 5: Total energy of H in dependence of R for m(r) ≥ 1, n = 1, 2.

Figure 6: Total energy of H in dependence of R for m(r) ≥ 1, n = 3.
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