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Abstract

The Sagnac effect is described straightforwardly in Evans unified field theory
as an example of rotational relativity. The circulating light in a Sagnac inter-
ferometer at rest is a rotation of spacetime described by a tetrad field. This
is multiplied by the scalar valued vector potential magnitude A(0) to produce
vector potentials rotating at an angular frequency

ω1 =
c

r

where r is the radius of the circular platform. The additional mechanical spin-
ning of the platform results in a time delay which is the Sagnac effect. The
time delay is that between the light circulating with the spinning platform and
the light circulating against the spinning platform. This is observed as a frame
independent phase shift. Thus the Sagnac effect is an example of general or
rotational relativity in optics and electrodynamics.

Keywords: Evans field theory; general and rotational relativity in optics and
electrodynamics; the Sagnac effect.
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1.1. INTRODUCTION

1.1 Introduction

There have been many attempts to explain the well known Sagnac effect using
special relativity and gauge theory [1]– [3]. The effect is observed as a phase
shift in a mechanically rotated Sagnac interferometer and has been developed
into a high accuracy ring laser gyro. The rotational motion implies the use of
general relativity to explain the effect theoretically. Thus the many attempts
over more than ninety years based on special relativity are not valid because
the latter theory does not deal with the accelerations automatically introduced
by rotation. Barrett [4] has offered an explanation based on gauge theory and
non-simply connected topology. This is in the spirit of general relativity, but
is transitional towards the fully developed Evans field theory [5]– [30], which
is a straightforward extension of the Einstein field theory of gravitation to the
unified field.

In section 1.2 the effect is understood straightforwardly as one of general or
rotational relativity [31]– [38] in electrodynamics and optics. The rotating light
beam of the static Sagnac interferometer sets up a rotating tetrad field and a
rotating potential. The angular frequency of rotation (radians per second) is:

ω1 =
c

r
(1.1)

where c is the vacuum speed of light and r the radius of the circular platform, of
area πr2. The vacuum speed of light is a universal constant of general relativity
[39]. The radius r can be thought of as a Thomson or photon radius. Its inverse
is a wavenumber:

κ =
1
r
. (1.2)

The mechanical rotation of the platform at an angular frequency ω1 produces
phase shifts in the circulating tetrad fields of the Evans field theory, and from
these shifts a time delay can be calculated and compared with the experimental
result. The time delay is:

∆t = 2π
(

1
ω1 − Ω

− 1
ω1 + Ω

)
=

4πΩ
ω2

1 − Ω2
, (1.3)

and is the delay between a beam rotating with the spinning platform and a beam
rotating against the spinning platform. This is the Sagnac effect and is a clear
experimental proof to very high precision of the fact that the electromagnetic
field in general relativity is spinning spacetime [5]– [30]. These concepts do not
exist in the standard model, which is based on special relativity, notably the
Lorentz covariant Maxwell Heaviside equations. These are T invariant, where
T is the motion reversal operator, and so cannot describe the Sagnac effect, or
any type of rotational relativity such as the Faraday disc effect [31]– [38].

1.2 The Rotating Tetrad Fields

Consider the rotation of a beam of light of any polarization around a circle of
area πr2 in the XY plane at an angular frequency ω1 to be determined. The
rotation is a rotation of spacetime described by the rotating tetrad field [5]– [30]:

q(1) =
1√
2

(i− ij) eiω1t (1.4)
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i.e. rotation around the rim of the circular platform of the static Sagnac in-
terferometer with the beam of light. The Evans Ansatz [5]– [30] converts the
geometry into physics as follows:

A(1) = A(0)q(1). (1.5)

The geometry is Cartan geometry, or Riemann geometry with torsion. Thus
Eq.1.5 describes a vector potential field rotating around the rim of the circular
Sagnac platform at rest. Rotation to the left is described by:

A(1)
L =

A(0)

√
2

(i− ij) eiω1t (1.6)

and rotation to the right by:

A(1)
R =

A(0)

√
2

(i + ij) eiω1t. (1.7)

When the platform is at rest a beam going around left-wise takes the same time
to reach its starting point on the circle as a beam going around right-wise. The
time delay between the two beams is:

∆t = 2π
(

1
ω1
− 1
ω1

)
= 0. (1.8)

Note carefully that Eqs.1.6 and 1.7 do not exist in special relativity because
electromagnetism is thought of as an entity superimposed on a passive or static
frame which never rotates.

Now consider the beam 1.6 rotating left-wise and spin the platform left-wise
at an angular frequency ω. The result is an increase in the angular frequency
of the rotating tetrad, (because the spacetime is spinning more quickly):

ω1 → ω1 + Ω. (1.9)

Similarly consider the beam 1.6 rotating left-wise and spin the platform right-
wise at the same angular frequency Ω. The result is a decrease in the angu-
lar frequency of the rotating tetrad, (because the spacetime is spinning more
slowly):

ω1 → ω1 − Ω. (1.10)

The time delay between a beam circling left-wise with the platform and a beam
circling left wise against the platform is:

∆t = 2π
(

1
ω1 − Ω

− 1
ω1 + Ω

)
(1.11)

and this is the Sagnac effect.
In order to calculate the angular frequency ω1 we use the well known exper-

imental result [1]– [4], so:

∆t =
4ΩAr
c2

=
4πΩ

ω2
1 − Ω2

(1.12)

where:
Ar = πr2 (1.13)
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for a circular platform. If:
Ω � ω1 (1.14)

it is found that
ω1 =

c

r
= cκ (1.15)

Q.E.D. This is the angular frequency of the rotating tetrad, or rotating space-
time.

1.3 Discussion

The well known features of the Sagnac effect are all described by this analysis
of general relativity. The effect is observed as a phase shift which is frame
independent, so is the same to an observer on or off the platform. The time
delay itself is frame dependent but the phase is frame independent, being a
scalar. The time delay is not observed directly. The effect is independent of the
optical properties of the fiber that carries the beam of light around the circle,
and is the same if the beam of light is guided by mirrors instead of a fiber.
The reason is that the effect is due to mechanical rotation of spacetime itself,
i.e of the frame of reference itself. Analogously gravitation is the bending of
spacetime itself. The Sagnac effect is therefore similar [3] to the well known
Tomita Chiao effect - a phase shift observed in a light beam traversing a helical
optical fiber. The Sagnac effect can be thought of as a Tomita Chiao effect using
a circle rather than a helix. This is usually referred to as a topological phase
shift similar to the class of Berry phases. These have been shown to originate
in the Evans phase of the unified field theory [5]– [30], which also gives the
result 1.12 [3]. These phase shifts all originate therefore in general or rotational
relativity and not in special relativity.

The Sagnac effect can be influenced [1]– [4] by gravitational or Coriolis type
forces or centripetal type forces in dynamics. In the Evans field theory this
type of influence is due to the fact that gravitation affects electromagnetism
through the homogeneous current governing the homogeneous field equation
[5]– [30]. In the absence of gravitation the current is zero, in the presence of
gravitation it may be non-zero for the general spin connection. Thus solutions to
the homogeneous field equation are changed by gravitation, and in consequence
solutions to the rotating potential fields are changed, giving a shift in the Sagnac
effect due to the influence of central gravitational forces or non-central Coriolis
and centripetal forces on electromagnetism. A calculation of these effects in
general must be numerical.

Closely related to the Sagnac effect is the class of geometrical phases such
as that first observed by Tomita and Chiao [40]. The root cause of all geo-
metrical phases is parallel transport [41], a basic property of general relativity.
In the Evans field theory geometrical phases are due to tetrad fields. In the
Tomita Chiao effect the geometrical phase manifests itself by the passage of
light through a fiber wound into a helix. Nothing else is required to produce the
phase, which is evidently therefore a property of spacetime itself - a property of
general relativity. In special relativity (Maxwell Heaviside field theory) no such
effect is predicted, contrary to the experimental data. The reason is that in
special relativity the electromagnetic field is an entity which is superimposed on
a passive frame of reference in flat or Minkowski spacetime. Therefore in special
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relativity there is no tetrad field because the tetrad is by definition the matrix
which links two frames of reference [39]. In gravitational theory the upper index
of the tetrad (the a index) denotes the Minkowski tangent spacetime at a point
P - tangent to the base manifold indexed µ. In the Evans unified field theory
the concept is extended to optics and electromagnetism. The upper index is
that of the complex circular basis:

a = (1), (2), (3) (1.16)

and the lower index is that of the cartesian basis:

µ = X,Y, Z. (1.17)

The existence of spin in electromagnetic theory is therefore defined by ((1), (2), (3))
superimposed on (X,Y, Z). More generally this is the way that spin is treated
[5]– [30] within the Evans field theory for any radiated or matter field. This con-
cept can be applied to give a straightforward explanation of the Tomita Chiao
effect (and all geometrical phases [1]– [4]) as follows.

The geometrical phase of Tomita and Chiao is usually expressed [40] as:

φ = e(2πi(1− p
s )) (1.18)

where p is the pitch of the helix and s is its length. A helix turns 2π radians in
a pitch p, so p is the wavelength λ. Align s in Z. Therefore:

φ = e(2πi(1− λ
Z )) = e(2πi)e(−2πi λ

Z ) (1.19)

= e(−2πi λ
Z ) (1.20)

using
e2πi = cos 2π + i sin 2π = 1. (1.21)

In general relativity (Evans field theory) the vector potential of the light
traversing the helical path is a rotating and translating tetrad field q(1) multi-
plied by A(0):

A(1) = A(0)q(1) (1.22)

where:
q(1) =

1√
2

(i− ij) e(i(ωt−κZ)). (1.23)

In general:

ω =
v

r
, κ =

1
r
, ω = κv. (1.24)

Here ω is an angular frequency in radians per second, r is a distance in meters,
κ is a wave-number in inverse meters, and v is a velocity in meters per second.
Thus Eq.1.23 denotes in general a propagating and circularly polarized wave of
space-time, and can be expressed as:

q(1) =
1√
2

(i− ij) e
“
−i

bZ
r

”
(1.25)

where:
Ẑ = Z − vt. (1.26)
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This is a wave of spacetime which propagates in the same way in the absence
of matter. Therefore by general relativity theory it propagates at the speed of
light c. Thus:

v = c. (1.27)

This inference is supported experimentally by the fact that the geometrical
phase is independent of the type of glass or dielectric making up the fiber.
If the optical fiber were dispensed with completely and the beam of light were
guided in a helical path by a system of mirrors in a high vacuum, the geometrical
phase would be the same, Eq.1.19. Therefore the geometrical phase must be
a property of spacetime itself, i.e. must be the tetrad field [24] of the Evans
field theory. As in the Sagnac effect, this is clear experimental proof of the fact
that optics and electrodynamics are governed by general relativity and not by
special relativity.

Comparing Eqs1.19 and 1.25:

r =
ZẐ

2πλ
. (1.28)

In the special case:
Z = Ẑ = λ (1.29)

then:
r =

λ

2π
=

1
κ
. (1.30)

In special relativity (Maxwell Heaviside field theory) the electromagnetic field
is a nineteenth century entity separate from the frame of reference. Therefore
there is no propagating wave of space-time since space-time in special relativity
is the flat Minkowski space-time [39]. In the Maxwell Heaviside field theory
a light beam traveling in a helix is predicted to have the same (dynamical)
phase as a light beam traveling in a straight line, contrary to the experimental
observation of the geometric phase. The latter is due to parallel transport of
space-time and there is no parallel transport of space-time in special relativity.
The parallel transport methods of gauge theory [39] use an abstract gauge space
superimposed on Minkowski space-time. The abstract gauge space is purely
mathematical in nature and so is extraneous to general relativity. In Evans field
theory this procedure, introduced by Yang and Mills, is replaced entirely by
Cartan geometry, which is general relativity itself. Cartan geometry is rigorously
equivalent to the most general type of Riemann geometry. Thus, by Okham’s
Razor, Evans field theory is preferred to Yang Mills field theory. The Evans field
theory gives all the results [5]– [30] of the Yang-Mills field theory of the weak
and strong forces, but using geometry alone, as demanded by general relativity.
The conventional Yang Mills field theory is a theory of special relativity.
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