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Abstract

The ECE theory is applied to atoms and molecules, using the hydrogen (H)
atom as an example. The ECE wave equation is used in the non-relativistic
quantum limit (Schrödinger equation) but the generally covariant Coulomb law
is used, incorporating the spin connection of ECE space-time. All Coulombic
interactions in atoms and molecules must be generally covariant, meaning that
the spin connection must be used. This realizations opens up many new possi-
bilities, in particular the ionization of the atom or molecule by tuning the spin
connection. This is not possible in the standard model, even on a conceptual
level, because the latter in electrodynamics is a theory of special relativity with
no spin connection.
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and molecules, H atom, space-time resonance, new energy.
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6.1. INTRODUCTION

6.1 Introduction

Recently [1]– [17] a generally covariant unified field theory has been proposed
and accepted in the natural sciences [18] as being a mathematically correct and
workable unified field theory, with major consequences. In this paper the ECE
wave equation is applied in some detail to the well known quantum theory of
atoms and molecules. The most important consequence for electrical engineer-
ing is that free electrons can be produced when the spin connection of ECE
field theory is tuned to resonance. This means that there is a novel source of
electric power available from materials and/or circuits of the right design, as
proven experimentally recently [19]. This fact is illustrated in this paper for
the hydrogen (H) atom. In Section 6.2 the Dirac and Schrödinger equations are
recovered from the generally covariant ECE wave equation. In Section 6.3 the
Coulomb law used in the Schrödinger equation of atoms and molecules is made
generally covariant by incorporating the spin connection within the context of
ECE theory. Finally in Section 6.4 it is shown how the H atom may be ionized
by tuning the spin connection to resonance, at which resonant kinetic energy
is inputted to the atom or molecule from space-time. If this kinetic energy
exceeds the ionization energy the electrons break free from the protons of the
nucleus. The free electrons thus produced may be used for the generation of
electric power.

6.2 Dirac and Schrödinger equations from the
ECE wave equation

The ECE wave equation [1]– [17] is:

(� + kT )qa
µ = 0 (6.1)

where
R = −kT = qλ

a∂
µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(6.2)

Here k is Einsteins constant, T is the index reduced canonical energy-momentum
density, qa

µ is the tetrad form, Γν
µλ is the general connection of Riemann geom-

etry, and ωa
µb is the spin connection of Cartan geometry. Using Einstein’s

equivalence principle [20] Eq.(6.1) must reduce to equations of special relativity
when there is no gravitational field present. The free particle Dirac equation is
recovered from the ECE wave equation in the limit:

kT =
(mc

~

)2

=
1
λ2

(6.3)

where m is the mass of the free fermion (e.g. an electron), c is the speed of
light, ~ is the reduced Planck constant and λ is the Compton wavelength. The
free fermion Dirac equation is therefore:(

� +
m2c2

~2

)
qa
µ = 0 (6.4)

The Dirac spinor is therefore the tetrad qa
µ in the limit of special relativity

defined by Einstein’s equivalence principle. The Dirac spinor is therefore defined
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CHAPTER 6. APPLICATION OF EINSTEIN-CARTAN-EVANS . . .

by the equation that defines the tetrad in SU(2) representation space:[
V R

V L

]
=
[
qR
1 qR

2

qL
1 qL

2

] [
V 1

V 2

]
(6.5)

Adopting the usual [21] field particle theory notation for the Dirac spinor:

ψ =
[
ζR

ζL

]
(6.6)

where the Pauli spinors are:

ζR =
[
qR
1

qR
2

]
, ζL =

[
qL
1

qL
2

]
(6.7)

So the Dirac equation is the familiar wave equation [21]:(
� +

m2c2

~2

)
ψ = 0 (6.8)

This can be factorized into the first order differential equation [1]– [17]:(
iγµ∂µ −

mc

~

)
ψ = 0 (6.9)

where γµ is the Dirac matrix. In vector notation and in S.I. units equation (6.9)
becomes two simultaneous equations:

(E + cσ · p)ζL(p) = mc2ζR(p) (6.10)

(E − cσ · p)ζR(p) = mc2ζL(p) (6.11)

where:
ζL(0) = ζR(0) (6.12)

Here E is the total relativistic energy, p is the relativistic momentum, and
σ denotes the Pauli matrix. These well known vector equations of relativistic
quantum mechanics are therefore limits of the ECE wave equation in the absence
of a gravitational interaction between fermions.

The Schrödinger equation is the non-relativistic limit of the Dirac equation.
However the former equation is written in O(3) representation space and the
latter in SU(2) representation space with half integral fermion spin and Fermi-
Dirac statistics in thermodynamics. So the link between the two equations can-
not be forged in a trivial manner. However, the Dirac equation (6.8) is a Klein
Gordon equation [21] for each component of the tetrad, i.e. for qR

1 , q
R
2 , q

L
1 , q

L
2 .

Each Klein Gordon equation is formed from the Einstein equation of special
relativity using the fundamental operator equivalence:

pµ =
(
E

c
,p

)
= i~∂µ = i~

(
1
c

∂

∂t
,−∇

)
(6.13)

In this way, the classical limit of the Dirac equation is found through the Klein
Gordon equation and is the Einstein equation:

E2 = c2p2 +m2c4 (6.14)
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6.2. DIRAC AND SCHRÖDINGER EQUATIONS FROM THE ECE . . .

where:

E = γmc2, E0 = mc2, γ =
(

1− v2

c2

)−1/2

(6.15)

Here E is the total relativistic energy, E0 is the rest energy, and

p = γmv (6.16)

is the relativistic momentum. From Eq.(6.16) it is seen that:

p2c2 = γ2m2c4
v2

c2

= γ2m2c4
(

1− 1
γ2

)
= γ2m2c4 −m2c4

(6.17)

The relativistic kinetic energy is obtained from Eq.(6.16) and is:

T = mc2(lcγ − 1)

= mc2
(

1− v2

c2

)−1/2

−mc2

∼ mc2
(

1 +
1
2
v2

c2
+ · · ·

)
−mc2 =

p2

2m

(6.18)

when v � c. Eq.(6.18) is the Newtonian kinetic energy and in Eq.(6.18) p is
the Newtonian momentum magnitude:

p = mv (6.19)

The free particle Schrödinger equation is obtained from

T =
p2

2m
(6.20)

using Eq.(6.13). So:

− ~2

2m
∇2ψ = Eψ = i~

∂ψ

∂t
(6.21)

The kinetic energy or hamiltonian operator is defined as:

Ĥ := − ~2

2m
∇2 (6.22)

so we obtain the familiar:
Ĥψ = Eψ (6.23)

In the presence of potential energy V , the hamiltonian operator becomes:

Ĥ := − ~2

2m
∇2 + V (6.24)

Unlike the Dirac equation, the Schrödinger equation has no sense of helicity or
half integral spin, and when using the Schrödinger equation the orbital angular
momentum L is replaced by L+ 2S where S is the spin angular momentum.
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CHAPTER 6. APPLICATION OF EINSTEIN-CARTAN-EVANS . . .

The hydrogen atom in the standard model is described from Eq.(6.23) by
adding a potential energy:

V = − e2

4πε0
· 1
r

(6.25)

from the Coulomb law of the standard model [22]. Here ε0 is the vacuum
permittivity, e is the charge on the proton, −e is the charge on the electron,
and r is the radial component of the spherical polar coordinate system. In ECE
theory the Coulomb law of the standard model is modified to include a spin
connection [1]– [17], and this modification can result in resonance ionization of
the H atom to give free electrons, as shown later in this paper.

The d’Alembertian operator in Eq.(6.4) is:

� = ∂µ∂µ = −p
µpµ

~2

= − 1
~2

(
E2

c2
− p2

)
=

1
c2
∂2

∂t2
−∇2

(6.26)

so

−~2∇2qa
µ =

(
E2

c2
−m2c2

)
qa
µ (6.27)

This is a special relativistic form of Eq.(6.23). Multiplying Eq.(6.27) by c2 and
using Eq.(6.14) it is found that Eq.(6.27) is:

−c2~2∇2qa
µ = c2p2qa

µ (6.28)

i.e.
−~2∇2qa

µ = p2qa
µ (6.29)

where:

p2 =
E2

c2
−m2c2 (6.30)

To describe the H atom with the standard Dirac equation, a Coulombic term is
added to Eq.(6.27) to give:

−
(

~∇2

2m
+

e2

4πε0r

)
qa
µ =

1
2m

(
E2

c2
−m2c2

)
qa
µ (6.31)

In the relativistic quantum limit of ECE theory a resonance Coulomb law can
be added to Eq.(6.31). The most rigorous method however is to use the ECE
field equations [1]– [17] in the ECE wave equation.

6.3 The resonant laws of classical electrodynam-
ics in general relativity and ECE theory

The Coulomb and Ampére Maxwell laws in ECE theory are:

∇ ·Ea = µ0cJ̃
0a (6.32)
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6.3. THE RESONANT LAWS OF CLASSICAL . . .

∇×Ba − 1
c2
∂Ea

∂t
=
µ0

c
J̃

a
(6.33)

where
Ea = −∂Aa

∂t
−∇φa − cω0a

bA
b + ωa

bφb (6.34)

Ba = ∇×Aa − ωa
b ×Ab (6.35)

Here Ea is the electric field strength, Ba is the magnetic flux density, µ0 is
the vacuum permeability, φa is the scalar potential in volts, Aa is the vector
potential, and the inhomogeneous four-current [1]– [17] is defined by:

J̃µa = (J̃0a, J̃
a
) (6.36)

For simplicity of notation and development, the polarization indices may be
dropped. This process is equivalent to the use of a simplified form of the spin
connection, which in general is the four-vector:

ωa
µb = (ωa

0b ,−ωa
b) (6.37)

The spin connection is a fundamental feature of general relativity [1]– [17] and
indicates that the field is the frame itself. The electromagnetic field is spinning
space-time and the gravitational field is curving space-time. In the standard
model the electromagnetic field is a separate entity superimposed on a flat or
Minkowski space-time - the Lorentz covariant Maxwell Heaviside field theory of
special relativity. In order to unify electrodynamics with gravitation and other
fields the ECE theory is needed [1]– [17]. In this simplified notation Eqs.(6.32)
to (6.36) become:

∇ ·E =
ρ

ε0
(6.38)

∇×B − 1
c2
∂E

∂t
=
µ0

c
J̃ (6.39)

E = −∂A
∂t
−∇φ− cω0A + φω (6.40)

B = ∇×A− ω ×A (6.41)

where ρ is the charge density in coulombs per cubic meter, and J̃ is the current
density. The four current in this case is:

J̃µ = (cρ, J̃) (6.42)

Here ω0 is the time-like and ω the space-like parts of the complete spin connec-
tion four-vector. Thus ω is a vector in three dimensions, and ω0 is a scalar.

The Coulomb law is a law of electro-statics described by the scalar potential
and in ECE theory is described by the equations:

∇ ·E =
ρ

ε0
(6.43)

E = (−∇ + ω)φ (6.44)

These can be combined to give the resonant Poisson equation [1]– [17]:

∇2φ−∇ · (ωφ) = − ρ

ε0
(6.45)
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At resonance φ is greatly amplified and kinetic energy resonance can occur [23]
and if this law is incorporated into the Schrödinger equation (6.23), it may
be shown numerically that the atom ionizes if the resonant kinetic energy is
greater than the ionization energy of H, 13.6 eV [22]. The free electrons from
ionization are produced by energy form space-time, and the free electrons are a
source of electric power for engineering applications. This type of resonance has
recently been shown to exist in nature 6.24, using circuits and materials more
complicated than H. The latter is used to illustrate the scientific principles at
work.

If on the other hand the scalar potential is neglected and attention is confined
to the vector potential only, then:

E = −∂A
∂t
− cω0A (6.46)

and we obtain the following resonance equation from the Ampére Maxwell law
(6.39):

1
c2
∂2A

∂t2
+
ω0

c

∂A

∂t
+ (∇ · ω)A− (A ·∇)ω

−∇2A + ∇(∇ ·A)− ω(∇ ·A) + (ω ·∇)A =
µ0

c
J̃

(6.47)

If a quasi plane-wave approximation is used:

∇ ·A ∼ 0 (6.48)

and if J̃ can be expressed as a sum of time dependent and r dependent parts:

J̃ ∼ J̃(t)− J̃(r) (6.49)

two resonance equations in A are obtained:

1
c2
∂2A

∂t2
+
ω0

c

∂A

∂t
+ (∇ · ω)A =

µ0

c
J̃(t) (6.50)

and
∇2A− (ω ·∇)A + (A · ∇)ω =

µ0

c
J̃(r) (6.51)

At resonance, A is greatly amplified and kinetic energy inputted from space-
time.

Similarly, the magneto-static ECE equations are:

∇ ·Ba = µ0j̃
0a (6.52)

∇×Ba =
µ0

c
J̃

0a
(6.53)

Ba = ∇×Aa − ωa
b ×Ab (6.54)

which give the equations:

∇ · (ωa
b ×Ab) = −µ0j̃

0a (6.55)

and
∇× (∇×Aa − ωa

b ×Ab) =
µ0

c
J̃

a
(6.56)
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6.3. THE RESONANT LAWS OF CLASSICAL . . .

Eq.(6.55) is the generally covariant Gauss law of magnetism, and Eq.(6.56) is
the generally covariant Ampére law of magnetism. In these equations:

ω1
b ×Ab = ω1

1 ×A1 + ω1
2 ×A2 + ω1

3 ×A3

etc.,
(6.57)

If we define:
j̃0a := j̃0a

1 + j̃0a
2 + j̃0a

3 (6.58)

Eq.(6.55) for example splits into three equations:

∇ · (ω1
1 ×A1) = −µ0J̃

01
1

etc.,
(6.59)

and the notation can be simplified again by considering each equation to be of
the form:

∇ · (ω ×A) = −µ0J̃
0 (6.60)

Therefore:
ω ×A = −µ0

∫
j̃0dr (6.61)

Similarly, Eq.(6.56) can be split into three equations of the form:

∇× (∇×A− ω ×A) =
µ0

c
J̃ (6.62)

so we obtain
∇× (∇×A) =

µ0

c
J̃ − µ0∇×

∫
j̃0dr (6.63)

Using vector identities [25], Eq.(6.62) is the resonance equation:

∇(∇ ·A)−∇2A−ω(∇ ·A)+ (ω ·∇)A+(∇ ·ω)A− (A ·∇)ω =
µ0

c
J̃ (6.64)

and again A is amplified at resonance, giving novel effects in magnetism. Con-
sidering the Z component of J̃ gives:

∂2AX

∂Z∂X
+
∂2AY

∂Z∂Y
+ ωX

∂AZ

∂X
+ ωY

∂AZ

∂Y
− ωZ

∂AX

∂X
− ωZ

∂AY

∂Y
+

(
∂ωX

∂X
+
∂ωY

∂Y

)
AZ −

∂ωZ

∂X
AX −

∂ωZ

∂Y
AY =

µ0

c
J̃Z

(6.65)

If it assumed for simplicity that only AX is non-zero the resonant structure
simplifies to:

∂

∂Z

(
∂AX

∂X

)
− ωZ

∂AX

∂X
−
(
∂ωZ

∂X

)
AX =

µ0

c
J̃Z (6.66)

producing amplification of AX at resonance. In this simple example, AX must
be a mathematical function of both X and Z, and ωZ must be a function of X.
At resonance, amplification of the vector potential and the magnetic flux density
occurs by tuning the spin connection of space-time. This is a rigorous result of
general relativity (ECE theory) applied to the theory of magnetism. The latter
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is unified with the gravitational field, producing the magneto-gravitational field.
These are some simple examples of many types of novel resonant equations of
electrodynamics and gravitational theory available from ECE theory.

The generally covariant Coulomb law is of particular importance to the quan-
tum theory of atoms and molecules, the theory of absorption, and to well devel-
oped numerical methods such as density functional theory. General covariance
in atoms and molecules works its way into all aspects of the subject [22], for
example transition electric dipole moment theory, where the interaction hamil-
tonian [22] is:

H(1)(t) = −µ ·E(t) (6.67)

The electric field E in general relativity must always be defined through the spin
connection, so the important new property of space-time resonance is present
throughout the subject of atomic and molecular quantum mechanics. Similarly,
the interaction of a magnetic dipole moment m and a magnetic flux density
produces the interaction hamiltonian:

H(2)(t) = −m ·B(t) (6.68)

Here again, B must always be defined by Eq.(6.35) in general relativity, and
therefore in terms of the spin connection. In the simplest instance, Eq.(6.67) is:

H(1)(t) = ezE(t) (6.69)

and the eE part of this hamiltonian comes from the resonant Coulomb law in
general relativity. The Laporte selection rule [22] for example, is governed by
the interaction hamiltonian (6.67). The transition dipole moment is zero unless
it is totally symmetric under the symmetry operations of the system. For the
Laporte selection rule, this operation is the parity inversion operation:

P̂ (r) = −r (6.70)

Electric dipole transitions are allowed only if they involve a change of parity.
Big charge shifts long distances, giving intense absorption lines 6.22. Time de-
pendent perturbation theory 6.22 shows that the transition rate and the spectral
intensity of an absorption line depend on the square of the matrix element of
the perturbation, i.e. the square of

〈n2l2ml2 | µ | n1l1ml1〉 (6.71)

in Dirac bracket notation. In ECE theory H(1) depends on the spin connec-
tion of space-time so at spin connection resonance or space-time resonance the
spectral absorption band is greatly affected. Recent repeatable experiments [24]
show beyond scientific doubt that such resonances can be induced in the labo-
ratory. Inside an atom or molecule, the electron can be promoted by space-time
resonance not only from the s to the p orbital, but to higher odd-parity orbitals
such as the f orbital and so on up to the continuum state, where the electron
breaks free of the nucleus, and may be used to generate electric power as a free
electron (i.e. electric) current in a circuit or cable. This novel phenomenon in
the natural and life sciences is due to space-time itself, and not due to a device
such as a tuned laser.
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6.3. THE RESONANT LAWS OF CLASSICAL . . .

Therefore the process of absorption by an atom or molecule is governed by:

H = −µ ·E (6.72)

The electric field strength in this process is always governed by:

∇ ·Ea =
ρa

ε0
(6.73)

Ea = −∂A
a

dt
−∇φa − cω0a

bA
b + ωa

bφ
b (6.74)

giving the most general type of resonance equation:

−∇ · ∂A
a

dt
−∇2φa − c∇ · (ω0a

bA
b) + ∇ · (ωa

bφ
b) =

ρa

ε0
(6.75)

The transition dipole moment µ is defined by the charge density ρa of an electron
in an orbital. For a plane wave in the standard model, Eq.(6.75) reduces to the
Poisson equation:

∇2φa = −ρ
a

ε0
(6.76)

and orbital angular momentum is imparted to the electron by an electromagnetic
field (photon). This well known theory does not consider the spin connection of
generally covariant unified field theory and loses much information. In Eq.(6.75):

∇ · (φbωa
b) = (∇ · ωa

b)φ
b + ωa

b ·∇φb (6.77)

and
∇ · (ω0a

bA
b) = (∇ ·Ab)ω0a

b + Ab ·∇ω0a
b (6.78)

If the vector potential is regarded as being a plane wave in the first approxima-
tion, then ωa

b is dual [1]– [17] to Ac, and in this first approximation:

∇ · ∂Aa

dt
∼∇ ·Ab ∼∇ · ωa

b ∼ 0 (6.79)

So Eq.(6.75) becomes the resonance equation:

−∇2φa − c(∇ω0a
b) ·A

b + ωa
b ·∇φb =

ρa

ε0
(6.80)

If for convenience of argument we assume that:

cAb = φb (6.81)

and that ωa
b is negative in sign, then we obtain:

∇2φa + (∇ω0a
b) · φ

b + ωa
b ·∇φb =

ρa

ε0
(6.82)

or
∇2φa + gφc ·∇φb + g∇φc · φb =

ρa

ε0
(6.83)

where g is a constant. This again is a simple resonance equation [1]– [17] showing
that resonant kinetic energy can be inputted into the atom, molecule or material
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from space-time itself. The latter gives an unlimited amount of electric power
in theory. However there may be limitations of design and efficiency as usual
in engineering. Designs must be optimized as usual by experimentation and
practical experience [24].

An important application of the Coulombic term in the Schrödinger equation
is the well used density functional theory and computational code. The Hartree
term for example is

VH =
∫

e2ns(r′)
| r − r′ |

d3r′ (6.84)

and is used in the effective single particle potential VS of the Kohn Sham [26]
equations of the auxiliary system of density functional methods. The Hartree
term describes the electron to electron Coulomb repulsion and so obeys a reso-
nance equation in ECE theory. If for simplicity we omit the polarization super-
scripts in Eq.(6.75) this resonance equation is:

∇2VH − ω ·∇VH − (∇ · ωa
b)VH = −eρ

ε0
(6.85)

so space-time resonance [1]– [17] amplifies the electron to electron repulsion,
causing ionization if the kinetic energy inputted from space-time at resonance
exceeds the binding energy of the atom, molecule or material. The task of the
engineer is to devise a method to induce such resonance, and this has been
shown to be possible 6.24. Space-time resonance may also be the explanation
for the well known Tesla coil and the well known electron avalanche phenomena
in electrical engineering. Therefore space-time resonance has been known to
electrical engineers and inventors but has only now found an explanation from
the rigorous application of general relativity to classical electrodynamics (ECE
theory).

In the standard model of classical electrodynamics there is no space-time
resonance because there is no spin connection, Maxwell-Heaviside theory being
a theory of flat spacetime (special relativity and Lorentz covariant). The Hartree
term is based on the solution to the standard model Poisson equation:

∇2φ = − ρ

ε0
(6.86)

The solution is well known to be [27], in S.I units:

φ =
1

4πε0

∫
ρ(r′)
| r − r′ |

d3r′ (6.87)

The Hartree term in S.I. units is therefore:

φH =
1

4πε0

∫
ens(r)
| r − r′ |

d3r′ (6.88)

and the charge density is expressed in terms of a number density ns with the
units of inverse meters cubed. In ECE theory (general relativity), the Hartree
potential obeys:

−∇2φH + ω ·∇φH + (∇ · ω)φH =
ens(r)
ε0

(6.89)
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At space-time resonance φH and ns(r) are amplified. ECE theory may be
applied to density functional code by using Eq.(6.89) instead of the standard
model:

∇2φH = −ens(r)
ε0

(6.90)

Some more discussion of how this process may be coded, graphed and animated
is given in Section 6.4.

An H atom is described therefore in the standard model by a combination
of the non-relativistic Schrödinger equation and the classical Coulomb law as
summarized in the following equations:

− ~2

2m
∇2ψ = (E − V )ψ, V = −eφ, φ =

e

4πε0r
(6.91)

The electric field strength between the electron and proton inside the H atom
is defined in the standard model by:

E = −∇φ, ∇ ·E =
ρ

ε0
(6.92)

In the non-relativistic quantum limit of ECE theory [1]– [17] the Schrödinger
equation is used with a potential defined by the resonance equation:

∇2φ− (∇ · ω)φ− ω ·∇φ = − ρ

ε0
(6.93)

i.e. the equation:
∇2φ = − ρ

ε0
+ (∇ · ω) + ω ·∇φ (6.94)

In the standard model, Eq.(6.94) is the Poisson equation:

∇2φ = − ρ

ε0
(6.95)

So the effect of the spin connection ω is to add a charge density:

ρ1 = −ε0∇ · (φω) (6.96)

In the first approximation φ in Eq.(6.94) may be taken to be roughly the
Coulomb potential:

φC =
1

4πε0

∫
ρ(r′)
| r − r′ |

d3r′ (6.97)

so

ρ1 ∼ −∇ ·
(

ω

4π

∫
ρ(r′)
| r − r′ |

d3r′
)

(6.98)

where ρ(r′) is the Coulombic charge density used in density functional code for
the H atom. Therefore, in this rough approximation:

∇2φ ∼ − 1
ε0

(ρ+ ρ1) (6.99)

and
φ ∼ eeff

4πε0r
(6.100)
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where eeff is an effective charge perturbed by the spin connection. At resonance,
φ becomes very large, so a perturbation approximation can only be used self-
consistently in an off-resonant condition. The space-time resonance can be
thought of as:

r → r′ (6.101)

in Eq.(6.98), defining a “radius of resonance”.
Space-time resonance affects all the well known [22] phenomena of molecular

and material quantum mechanics used in physics, chemistry and the life sciences.
To end this section this fact is illustrated with reference to exchange energy
and its concomitant Fermi repulsion and with the theory of absorption of a
photon. In ECE theory, absorption of a photon is again described by a resonance
equation and is understood entirely in terms of geometry, as required by general
relativity. The exchange energy occurs in the simplest instance in helium (He),
which has two electrons and two protons. The Schrödinger equation of the He
atom [22] is:

Ĥψ = Eψ (6.102)

Ĥ = − ~2

2me
(∇2

1 +∇2
2)−

2e2

4πε0r1
− 2e2

4πε0r2
+

e2

4πε0r12
(6.103)

The equation is a function of the coordinates of the two electrons, r1 and r2:

Ĥ(r1, r2)ψ = E(r1, r2)ψ (6.104)

It is not possible to solve this equation analytically and various levels of approx-
imation are used as is well known: for example perturbation theory, density
functional theory, ab initio theory. In perturbation theory [22] a rough ap-
proximation is attempted, taking the perturbation to be the electron-electron
repulsion. This approximation is expressed as:

H(0) = H1 +H2, Hi = − ~2

2me
∇2

i −
2e2

4πε0ri
(6.105)

where
Hiψ(ri) = Eiψ(ri) (6.106)

Thus

(H1 +H2)ψ(r1, r2) = (H1 +H2)ψ(r1)ψ(r2)
= H1ψ(r1)ψ(r2) + ψ(r1)H2ψ(r2)
= E1ψ(r1)ψ(r2) + E2ψ(r1)ψ(r2)
= (E1 + E2)ψ(r1, r2)

(6.107)

The unperturbed wave-function of He is a product of two H type wave-functions:

ψ(r1, r2) = ψn1l1ml1(r1)ψn2l2ml2(r2) (6.108)

with energies:

E = −4hcR∞

(
1
n2

1

+
1
n2

2

)
(6.109)

The electron to electron repulsion in He introduces the first order correction [22]:

E(1) = J = 〈n1l1ml1 ; n2l2ml2 |
e2

4πε0r12
| n1l1ml1 ; n2l2ml2〉 (6.110)
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defining the Coulomb integral:
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is changed to:
�qa

µ = (R+R1 +R2)qa
µ (6.117)

In the Dirac limit the extra curvatures R1 and R2 are defined by:

| R1 |=
e2A∗aA

a

~2
, | R2 |=

emcγa(e2A∗a +Aa)
~2

(6.118)

This process is effectively a minimal prescription in which ∇ is changed to

∇→∇− ie

~
A (6.119)

Therefore in this case the spin connection is:

ω = − ie
~

A (6.120)

The modulus of Eq.(6.119) gives:

~κ = eA(0) (6.121)

where
κ =| ω | (6.122)

is a wave-number and magnitude of the spin connection. Eq.(6.120) describes
the absorption of a photon of energy ~ω, momentum ~κ and angular momen-
tum ±~. It can be seen that the photon originates in the spin connection of
space-time itself. In this process the kinetic energy operator of the Schrödinger
equation is changed as follows:

− ~2

2m
∇2 → − ~2

2m
(∇− ω)2 (6.123)

Thus:
∇2ψ → ((∇− ω) · (∇− ω))ψ (6.124)

and the process of photon absorption by an atom is described by the resonance
equation:

− ~2

2m
(∇2 − ω ·∇−∇ · ω + ω2)ψ = (E − V )ψ (6.125)

where V is the resonant Coulombic term of ECE theory.

6.4 Suggested numerical methods in density func-
tional code

Starting with the H atom, density functional code can be run with the standard
Coulomb potential to give base line output. The latter describes the well known
2n2 - fold degeneracy of the H atom [22], where n is the principal quantum
number. Electron spin produces s = ±1/2 , doubling the degeneracy from n2 -
fold. This high level of degeneracy is not present if the potential energy V does
not vary as 1/r [22], i.e. the degeneracy is caused by the use of the Coulomb
potential. In ECE theory the degeneracy is removed at resonance, but remains
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in an off resonance condition. This should be demonstrated numerically by
using the ECE resonance equation:

∇2φ−∇ · (ωφ) =
ρ

ε0
(6.126)

at the point in the density functional code where the Coulomb potential is nor-
mally coded. The standard density functional code is then resumed and the
output graphed and animated. This process can be repeated in any atom or
molecule or material such as a crystal which can be described by contemporary
density functional code. The spin connection enters into all areas of quantum
mechanics in which the Coulomb potential is used, for example the electron
to proton, electron to electron and proton to proton terms in the Dirac or
Schrödinger equations. Use of the generally covariant ECE wave equation [1]–
[17] will show the effect of gravitation on atomic and molecular quantum me-
chanics, an entirely new subject area in the natural and life sciences, for example
DNA studies and genetics. ECE theory also applies [1] to the electro-weak field
(radio activity) and the strong nuclear force between a neutron and a proton in a
nucleus. The interaction of the strong, electromagnetic and gravitational fields
inside a nucleus determines for example the natural abundance of the elements,
and here again, ECE theory applies, with concomitant space-time resonance
equations. At a sub nuclear level, ECE theory determines the science of quarks
and gluons, and elementary particle theory.
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