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Abstract

The equations for counter gravitation are developed in objective, or generally co-
variant, physics. The latter is represented by Einstein Cartan Evans (ECE) field
theory and based on Cartan geometry (Riemann geometry extended with tor-
sion). It is shown that the effect of counter gravitation can be greatly enhanced
at spin connection resonance. The equation for resonance is solved numerically,
and numerical results also obtained for counter gravitational resonance in the
Newtonian force. The latter is greatly enhanced at resonance in a direction
opposite to the force due to gravity, resulting in counter gravitation.

Keywords: Counter gravitation, spin connection resonance, Einstein Cartan
Evans (ECE) unified field theory, objective physics, generally covariant unified
field theory.

14.1 Introduction

It is well known that both the Newton and Coulomb inverse square laws hold
to high precision in the laboratory, so the interaction between the two laws
must be insignificant under normal laboratory conditions. If two interacting
charged masses are considered, the interaction between them is the sum of the
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14.2. HOMOGENEOUS CURRENT AND RESONANCE EQUATION

electrostatic interaction between charges (the dominant term by many orders
of magnitude in the laboratory) and the gravitational interaction between the
two masses. The interaction term is very small, and has never been measured
in the laboratory. Nevertheless, a generally covariant unified field theory such
as the Einstein Cartan Evans (ECE) theory [1]– [21] allows for the existence
of interaction terms because in general the gravitational and electromagnetic
fields may interact in ECE theory. Their interaction is controlled by the homo-
geneous current of ECE theory, which is defined in Section 14.2. In order to
develop counter gravitational technology, the very small interaction term must
be amplified by resonance. The equation controlling resonance is developed in
Section 14.2, and solved numerically in Section 14.3 for the scalar potential of
the electrostatic field and for the Newtonian force. At resonance, termed “spin
connection resonance” (SCR) the electric field induced Newtonian force may be
amplified by the necessary many orders of magnitude in a direction opposite
to the force due to gravity. This must be the basis of practical counter grav-
itation. Without resonance, the electric field induced Newtonian force is far
too small to be measured and far too small to be of any practical utility. This
much is obvious from the precision of the Coulomb and Newton inverse square
laws under laboratory conditions, but artifactual claims about counter gravita-
tion continue to proliferate. In this paper we make a fresh start by developing
resonant counter gravitational technology based on circuit designs governed by
resonance equations. The gravitational field between two charged masses in the
laboratory is very well known to be many orders of magnitude smaller than
the electric field, so claims about large cross effects are obvious experimental
artifacts.

14.2 Homogeneous current and resonance equa-
tion

The interaction of electromagnetism and gravitation in ECE theory [1]– [21] is
described by the homogeneous current:

ja =
A(0)

µ0
(Ra

b ∧ qb − ωa
b ∧ T b) (14.1)

and the geometrical condition for interaction of the two fields is therefore:

Ra
b ∧ qb 6= ωa

b ∧ T b (14.2)

Here Ra
b is the curvature form, qb is the tetrad form, ωa

b is the spin connection
form and T b is the torsion form. If condition (14.2) is fulfilled the electromag-
netic field can affect the gravitational field on the classical level, and vice versa.
An example is polarization effects due to light deflected by gravity [1]– [21].
The homogeneous current is governed by the homogeneous field equation of
ECE theory:

d ∧ F a = µ0j
a (14.3)

where
F a = d ∧Aa + ωa

b ∧Ab (14.4)
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Here Aa is the electromagnetic potential form, defined by:

Aa = A(0)qa (14.5)

and F a is the electromagnetic field form, defined by:

F a = A(0)T a (14.6)

The factor cA(0) has the units of volts, where c is the speed of light, and cA(0)

is the primordial voltage present in the universe. In Eq.(14.3) µ0 is the vacuum
permeability in S.I. units. The Hodge dual [1]– [21] of Eq.(14.3) is:

d ∧ F̃ a = µ0J
a = µ0j̃

a (14.7)

and the objective or generally covariant Coulomb Law is part of Eq.(14.7), in
which the Hodge dual current, the inhomogeneous current, is:

j̃a =
A(0)

µ0
(R̃a

b ∧ qb − ωa
b ∧ T̃ b) (14.8)

For a given initial driving voltage cA(0), the inhomogeneous current, and the
quantity R̃a

b ∧ qb−ωa
b ∧ T̃ b are greatly amplified at SCR. This means that the

effect of the electromagnetic field on the gravitational field is greatly amplified,
and for the Coulomb law, the effect of the electric field on the Newtonian force is
greatly amplified. Such an effect does not exist in the standard model, because
in the latter, the classical electromagnetic field is Lorentz covariant only, and
not generally covariant as needed for objectivity in physics.

From Eqs.(14.3) and (14.4) the structure of the resonance equation is:

d ∧ (d ∧Aa + ωa
b ∧Ab) = µ0j

a (14.9)

and its Hodge dual gives another resonance equation. It has been shown [1]– [21]
that the Newtonian force between two masses m1 and m2 is:

fa = −m1m2G(Ra
b ∧ qb − ωa

b ∧ T b) (14.10)

where G is the Newton constant. The Newtonian force is therefore:

fa = −m1m2
µ0G

A(0)
ja (14.11)

When the electromagnetic and gravitational fields are independent:

Ra
b ∧ qb = ωa

b ∧ T b (14.12)

the only contribution to j̃a [1]– [21] is from the source mass, so:

j̃a =
A(0)

µ0
(R̃a

b ∧ qb)source (14.13)

Under this condition it has been shown [1]– [21] that the Coulomb law is:

∇ ·Ea = −φ(0)Ra i0
i

i = 1, 2, 3
(14.14)
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where:
φ(0) = cA(0) (14.15)

The curvature elements appearing in Eq.(14.14) are those due to the source
mass, the mass carrying the source charge. It has also been shown [1]– [21] that
the electric field in ECE theory is in general a vector boson defined by:

a = 1, 2, 3 (14.16)

so there are three equations of type (14.14):

∇ ·E1 = −φ(0)R1 i0
i (14.17)

∇ ·E2 = −φ(0)R2 i0
i (14.18)

∇ ·E3 = −φ(0)R3 i0
i (14.19)

Here, summation over repeated indices is implied, so:

R1 i0
i = R1 10

1 +R1 20
2 +R1 30

3 (14.20)

and so on. In Eqs.(14.17) to (14.20) the Riemann form elements are generated
purely by the source mass, so:

∇ ·Ea = µ0j̃
a = −φ(0)Ra i0

i (14.21)

If the electric field induces a Newtonian force, the Coulomb law is changed to:

∇ ·Ea = µ0j̃
a = −φ(0)(Ra i0

i + ωa
iaT

bi0) (14.22)

The effect of the electric field on the elements Ra i0
i is given by ωa

ibT
bi0. There-

fore the complete Coulomb Law becomes:

∇ ·Ea = µ0(j̃a
source + j̃a

int) (14.23)

where the interaction current is defined by:

j̃a
int = −φ

(0)

µ0
(Ra i0

i + ωa
ibT

bi0)int (14.24)

The interaction current in the absence of SCR is very tiny, and has never been
measured experimentally. Claims to the contrary are clearly artifactual, because
otherwise the Coulomb Law would not hold to very high precision in the labo-
ratory, contrary to well known [22] and accurately reproducible and repeatable
experimental data on the Coulomb Law.

The interaction Coulomb Law can therefore be written as:

∇ ·Ea = −ωa
bint ·Eb (14.25)

where:
ωa

bint ·Eb ∼ 0 (14.26)

Here ωa
bint is the interaction spin connection. This is non-zero if and only if

the electric field induces changes in the Newtonian force. Such changes do not
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exist in the standard model. For simplicity of argument only it is assumed that
the indices a and b are the same, so Eq.(14.25) is simplified to:

∇ ·E = −ωint ·E (14.27)

The electric field can be defined [1]– [21] as:

E = −(∇ + ω)φ (14.28)

where ω is the spin connection in the absence of interaction between the electric
field and Newtonian gravitation. A positive sign has been adopted for illustra-
tion only in Eq.(14.28) for ω, but in general [1]– [21]:

ωr = 0 , ±1
r

(14.29)

in spherical polar coordinates. In the absence of interaction between the electric
field and the Newtonian force [1]– [21]:

d2φ

dr2
+

1
r

dφ

dr
− 1
r2
φ = − ρ

ε0
(14.30)

but in the presence of interaction:

d2φ

dr2
+

1
r

dφ

dr
− 1
r2
φ− ωint · (∇ + ω)φ = − ρ

ε0
(14.31)

i.e. there is an extra term due to the interaction spin connection ωint. Eq.(14.31)
is the resonance equation:

d2φ

dr2
+
(

1
r
− ωint

)
dφ

dr
−
(

1
r2

+
ωint

r

)
φ = − ρ

ε0
(14.32)

and is solved numerically in Section 14.3 for various models of the interaction
spin connection. Here ρ is the charge density and ε0 is the vacuum permeability.

Resonant counter gravitation works by amplifying φ at resonance
from Eq.(14.32). It is seen from Eq.(14.25) that the interaction term is amplified,
meaning that the effect of the electric field on the Newtonian force is maximized
in a direction opposite to the gravitational field of the Earth.

The basic structure of the interaction Coulomb Law is:

∇ ·Ea =
ρa

ε0
− ωa

bint ·Eb (14.33)

If it is assumed for the sake of simplicity of development that only the diagonal
elements of the interaction spin connection exist:

(∇ + ω1
1int) ·E

1 =
ρ1

ε0
etc.

(14.34)

where the vector electric boson [1]– [21] is defined by:

E1 = −∇φ+ ωφ

E2 = −∇φ

E3 = −∇φ− ωφ

 (14.35)
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14.2. HOMOGENEOUS CURRENT AND RESONANCE EQUATION

Therefore there are three resonance equations in general:

(∇ + ω1
1int) · (−∇φ+ ωφ) =

ρ1

ε0
(14.36)

(∇ + ω2
2int) · (−∇φ) =

ρ2

ε0
(14.37)

(∇ + ω3
3int) · (−∇φ− ωφ) =

ρ3

ε0
(14.38)

The labels on the charge densities indicate that there are three different
charge densities present in general. If it is assumed that:

ρ = ρ1 = ρ2 = ρ3 (14.39)

and that:
ωint = ω1

1int = ω2
2int = ω3

3int (14.40)

the three resonance equations simplify to:

∇2φ+ ωint ·∇φ+ ∇ · (ωφ)− ωint · ωφ = − ρ

ε0
(14.41)

∇2φ+ ωint ·∇φ = − ρ

ε0
(14.42)

∇2φ+ ωint ·∇φ+ ∇ · (ωφ) + ωint · ωφ = − ρ

ε0
(14.43)

The resonance patterns from these three equations are obtained numerically and
discussed in Section 14.3. The ability of the electric field to affect the Newtonian
force is represented by the interaction spin connection ωint. Off resonance this
effect is very tiny, as argued, but at resonance its effect may be amplified enough
to make counter gravitation feasible.

The effect of the electric field on the Newtonian force is conveniently demon-
strated through the Hodge dual of Eq.(14.10):

f̃a = −m1m2G(R̃a
b ∧ qb − ωa

b ∧ T̃ bi0) (14.44)

In the absence of any effect of the electric field on the Newtonian force:

f̃a = −m1m2G(R0 10
1 +R0 20

2 +R0 30
3 ) (14.45)

which is the ordinary Newtonian force between m1 and m2, the well known
inverse square distance dependence being given by:

1
r2

= R0 10
1 +R0 20

2 +R0 30
3 (14.46)

In the presence of interaction, the Newtonian force due to the electric field is:

f̃a = −m1m2Gω
a
ibT

bi0 (14.47)

and simplifies to:
f̃ = −m1m2Gωint · T (14.48)

232



CHAPTER 14. SPIN CONNECTION RESONANCE IN COUNTER . . .

where T is a torsion vector defined by:

E = φT = ∇φ , (∇± ω)φ (14.49)

Thus:
(∇ + ω)φ = Tφ,

∇φ = Tφ

}
(14.50)

and:
f̃ =−m1m2Gωint ·

1
φ

(∇ + ω)φ ,

−m1m2Gωint ·
1
φ

∇φ

 (14.51)

where:
d2φ

dr2
+
(

1
r
− ωint

)
dφ

dr
−
(

1
r2
− ωint

r

)
φ = − ρ

ε0
(14.52)

Therefore to maximize the effect of the electric field on the Newtonian force at
SCR, the following term must be maximized:

f̃ = −m1m2Gωint
φ′

φ
(14.53)

where
φ′ =

dφ

dr
(14.54)

and where:
dφ′

dr
+
(

1
r
− ωint

)
φ′ −

(
1
r2
− ωint

r

)
φ = − ρ

ε0
(14.55)

This is illustrated numerically and discussed in detail in Section 14.3.

14.3 Numerical results

The resonance equation

d2φ

dr2
+
(

1
r
− ωr,int

)
dφ

dr
−
(

1
r2

+
ωr,int

r

)
φ = − ρ

ε0
(14.56)

has been solved numerically. This is the radial equation of the resonant Coulomb
law of Chapter 9, Eq.(9.34) therein, enhanced by an additional spin connection
term which describes the interaction of gravitation and electromagnetism (see
Eq. (14.52) of Section 14.2). In order to study the solutions of this equation,
we first consider the interaction-free case, ωr,int = 0, with no driving charge
density ρ. Eq.(14.56) contains a singularity for r = 0. Therefore we integrate
numerically from right to left. There are three types of solutions, depending on
the initial or boundary conditions at the right-hand side. Starting at r = 10,
we have chosen the three combinations

φ(r = 10) = 0.11,
dφ(r = 10)

dr
= 0.01 (14.57)

φ(r = 10) = 0.10,
dφ(r = 10)

dr
= 0.01 (14.58)
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φ(r = 10) = 0.09,
dφ(r = 10)

dr
= 0.01 (14.59)

In Fig. 14.1 the three solutions are graphed. In the second case the initial
conditions define a straight line which hits the coordinate origin. If the direction
of this line does not point to the center, the solution φ(r) turns to plus or minus
inifinity for r → 0. In the following we choose the initial conditions in such a
way that the ordinary Coulomb solution for a charge at r = 0 is obtained. Then
the solution (setting 4πε0 to unity) is

φ(r) = −1
r

(14.60)

dφ

dr
=

1
r2

(14.61)

For r = 10 we obtain φ(10) = −0.1 and dφ/dr = 0.01. Now we switch on
the interacting spin connection. Its physical form is unknown, we only know
that it is a function of r and possibly a fuctional of φ. In the limit r → ∞ it
should vanish. In the following we assume it to have the same form as for the
resonant Coulomb law: ωr,int = ±1/r. Then we get the following result for the
three possible values in vector boson notation (see Chapter 12):

ωr,int[−1] = −1
r

(14.62)

ωr,int[0] = 0 (14.63)

ωr,int[+1] =
1
r

(14.64)

Inserting this form into Eq.(14.56) with no stimulation of resonance ( ρ = 0)
leads in all cases (14.62–14.64) to nearly the same solutions. Differences are
not visible in the graph (Fig. 14.2). This is in accordance with our finding in
Chapter 7, Table 1, where the Coulomb spin connection did not lead to any
remarkable deviations from the ordinary Coulomb law.

The situation changes as soon as we apply a driving term ρ which is depen-
dent on a predefined wave number κ. In the simple case

ρ = Acos(κr) (14.65)

(depicted in Fig. 14.6) we get a clear dependence of φ from the wave number.
Even the characteristic of the solution changes as can be seen from Fig. 14.3. In
this diagram φ was plotted for four κ values (0.25, 0.5, 1., 2.) and an interacting
spin connection (Eq.(14.62)). Another interesting question is how the three
spin connections (14.62–14.64) lead to different solutions φ if the wave number
is the same. This result is presented in Figs. 14.4 and 14.5. Obviously the
characteristic remains the same, but the ωr,int[−1] leads to larger values of |φ|
while ωr,int[+1] effects a reduction.

Another interesting question is how the driving force in combination with
the interacting spin connection creates resonances of φ. In contrast to the
results described in Chapter 7 and Chapter 9, an oscillatory ρ does not lead to
oscillatory resonances in φ. The main effect is the enhancement of the rate of
increase or decrease for r → 0. This behaviour is concentrated on the center
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Type Equation

1 f1(r) = A cos (κr)

2 f2(r) = A cos (κr)e−0.25r

3 f3(r) = A(sin (κr) + sin (κ2r))2

4 f4(r) = A cos (κr) cos (cos (κr)) cosh (sin (κr))+
sin (2κr) sin (cos (κr)) sinh (sin (κr))

5 f5(r) =
{

0.5A if f4(r) > −0.2A
−1.5A elsewhere

Table 14.1: Models for the driving force

of the charge, which is plausible since gravity comes from the central mass and
interaction with electromagnetism is highest where both have their strongest
values.

Before looking at the results in detail we list the models for the driving force
used (Table 14.1). The first type is a pure cosine term which is folded by an
exponentially decreasing function in the second case. Type 3 is a combination
of two frequencies while type 4 is the driving force obtained for the equivalent
circuit in Chapter 9(essentially a combination of three frequencies). Finally we
have changed this model to a rectangular signal in type 5. The signal forms are
shown in Figs. 14.6–14.10.

The resonance curves show some maximal amplitude of φ in dependence of κ.
Since we do not have an oscillatory maximum difference as in Chapters 7 and 9,
we have chosen the value of φ at a grid point near to the center (r = 1/30) as an
indication of resonance. This value is plotted against κ in Figs. 14.11-14.15. The
five diagrams correspond to the driving forces of Fig. 14.6–14.10. Resonance
is not sharply structured but more oscillatory in nature. Figs. 14.11 and 14.12
show a harmonic form with maximum at κ = 0. This means that a constant
ρ produces the highest resonance. Other wave forms (Figs. 14.13, 14.14) lead
to anharmonic resonance curves. It is remarkable that the driving force of the
Coulomb resonant circuit (Chapter 9) produces also a very high effect (compare
the ordinate values of the diagrams). This may be a hint that both the Coulomb
and gravito-electromagnetic interactional resonance are connected.

The last example (Fig. 14.15) of this group shows the result of a rectangular
signal (Fig. 14.10). The signal amplitudes have been adjusted to Fig. 14.9. The
rectangular form obviously enhances the first minimum at κ = 0.2. According
to the examples considered here, this is a very effective form of the driving force
to evoke resonance effects. For an exact comparison the driving forces would
have to be normalized precisely, which was not the case in this calculation.

We have changed the spin connection form of Eq.(14.62–14.64) from 1/r
to 1/r3 type. This gives extremely high values in the resonance diagram Fig.
14.16. For r → 0 the numerical solution becomes unstable so we have left out
some grid points near to 0. The effects of the vector bosons [0] and [1] are
nearly identical on this scale, the boson [−1] produces a giant resonance. This
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last example shows that the form of the spin connection is most important for
the size of the resonance effect, while the form of the driving force determines its
shape. According to Eq.(14.53) the Hodge dual of the Newtonian gravitational
force is proportional to

f̃ ∼ −ωr,int
φ′

φ
(14.66)

For comparison with measurements we would have to take the Hodge dual once
more to obtain the force itself, but this would require knowledge of the metric.
Therefore we restrict to the form (14.66) to give a qualitative impression of
the effects. The expression φ′/φ is shown in Fig. 14.17 for type 5, κ = 0.25.
Due to zeros in φ there are poles in φ′/φ at certain radii. These poles cannot
occur in an off-resonant Coulomb potential since this remains always positive
or negative, depending of the sign of the central charge. So the poles are an
effect of resonance. Their position can mainly be influenced by the form of the
driving force and the boundary conditions of the potential. For r → 0 we have
φ → ±∞ as was shown earlier. For both asymptotes the sign of φ′ is different
from that of φ so that the ratio of both is always negative as is the case in Fig.
14.17.

The last graph (Fig. 14.18) shows the full force term (14.66) where the ratio
φ′/φ has been multiplied by the interacting spin connection. Since ωr,int[0] is
zero, the force for this vector boson type always disappears. The other two differ
in sign and result to an attractive and a repulsive force near to the center when
gravitation is impacted by an electrical potential. The zeros of φ at certain
radii lead to sharp peaks. For practical applicability of counter gravitation this
means that one would get a gravitational instability at these radii. It would be
advisable to avoid these effects by design and utilize the smooth range near to
the center. How the different modes of the vector boson can be evoked is not
clear yet. The numerical results show that the driving term and the boundary
conditions of the potential are most important for designing counter-gravitation
devices. It should be possible to design an equivalent circuit for Eq.(14.56). The
form of the interacting spin connection is not known but seems not to change
the results qualitatively.
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Figure 14.5: ωr,int-dependence of φ for type=1, κ = 2.
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Figure 14.6: Driving force, type 1, for four κ values: κ = 0.25, 0.5, 1.0, 2.0
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Figure 14.7: Driving force, type 2, for four κ values: κ = 0.25, 0.5, 1.0, 2.0
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Figure 14.8: Driving force, type 3, κ = 1.0
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Figure 14.9: Driving force, type 4, κ = 1.0
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Figure 14.10: Driving force, type 5, κ = 1.0
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Figure 14.11: Resonance diagram, type 1
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Figure 14.12: Resonance diagram, type 2
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Figure 14.13: Resonance diagram, type 3
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Figure 14.14: Resonance diagram, type 4
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Figure 14.15: Resonance diagram, type 5
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Figure 14.16: Resonance diagram for interacting spin connection 1/r3, type 5
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Figure 14.17: (dφ/dr)/φ for type=5,κ = 0.25
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Figure 14.18: Force term f (r) for type=5, κ = 0.25
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