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Abstract

In Einstein Cartan Evans (ECE) field theory the charge on the electron, -e,
is a fundamental constant, and therefore, electric charge/current density is
conserved in a fundamental continuity equation. In this paper the latter is
derived in a space-time with torsion and curvature within the context of Car-
tan geometry, thus proving that the continuity equation is valid in a generally
covariant unified field theory.
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23.1 Introduction

The ECE theory has been accepted as being a valid unified field theory within
the context of general relativity. It is therefore a generally covariant unified
field theory of physics, or natural philosophy. The equations of dynamics
and electrodynamics are expressed in a space-time with torsion and curva-
ture present in general. In both subject areas the vector equations have the
same format, and this is also the same as the Maxwell Heaviside and grav-
itomagnetic equations of standard physics, but expressed in ECE self con-
sistently in a generally covariant mathematical framework based on Cartan
geometry [1–12]. In ECE theory the charge on the electron, -e, is a universal
constant, which implies that charge/current density must be conserved in a
continuity equation that must be developed in a space-time with curvature
and torsion both present. In standard physics the continuity equation [13, 14]
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is part of Noether’s Theorem expressed in a Minkowski space-time with no
torsion and no curvature. In Section 23.2 the ECE equations of classical elec-
trodynamics and dynamics are reviewed and the electric charge and current
density defined. In Section 23.3 the ECE continuity equation is derived self -
consistently with the generally covariant Proca equation of ECE theory [1–12]
by making the charge current density proportional to the vector potential
and using an identically non-zero photon mass. In so doing the ECE conti-
nuity equation is identified as an example of the tetrad postulate of Cartan
geometry and the continuity equation is derived from geometry as required
in the philosophy of relativity.

23.2 The ECE Equations of Classical Dynamics and
Electrodynamics

The ECE equations of dynamics are found from the following equation of
geometry:

DµTκµν = Rκ
µ

µν (23.1)

where Tκµν is the Cartan torsion tensor and Rκ µν
µ is the Cartan curva-

ture tensor. This is a tensor equation in a space-time with curvature and
torsion [1–12] and is a tensorial expression of the Hodge dual of the Bianchi
identity. The covariant derivative of the torsion is the curvature. In vector
format this tensor equation becomes two generally covariant gravitomagnetic
equations valid for all field strengths. The first one is the covariant general-
ization of the Newton inverse square law:

∇ · g = 4πGρm. (23.2)

Here G is Newton’s gravitational constant. The acceleration due to gravity is:

g = c2(T 010i + T 020j + T 030k) (23.3)

and the mass density is:

ρ = J0
1

10 + J0
2

20 + J0
3

30 (23.4)

where c is the vacuum speed of light, a universal constant in the theory of
relativity, of which ECE is the most developed form to date. The current
terms defining the mass density are made up of curvature, torsion and spin
connection elements as in the following general formula [1–12]:

Jκ
µ

µν =
c2

4πG

(
Rκ

µ
µν − ωκ

µλTλµν
)

(23.5)
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where ωκ
µλ denotes the spin connection. The second vector equation is the

gravitomagnetic analogue of the Ampère Maxwell law of electrodynamics
written in a space-time with torsion and curvature both present in general,
and is:

∇ × h − 1
c

∂g

∂t
= 4πGJm (23.6)

where h is the gravitomagnetic analogue of the magnetic field strength H
of electrodynamics, g being the gravitomagnetic analogue of the electric dis-
placement D. In Eq. (23.6):

h = c2(T 332i + T 113j + T 221k) (23.7)

and

g = c2(T 110i + T 220j + T 330k). (23.8)

The current density term of the gravitomagnetic equation (23.6) is defined
by:

Jm = JXi + JY j + JZk (23.9)

where:

JX = J1
0

01 + J1
2

21 + J1
3

31, (23.10)

JY = J2
0

02 + J2
1

12 + J2
3

32, (23.11)

JZ = J3
0

03 + J3
1

13 + J3
2

23. (23.12)

Eq. (23.6) is a spin equation whereas Eq. (23.2) is an orbital equation. Note
carefully that the torsion components defining g are in general different in
the two equations.

There are two more gravitomagnetic field equations which are found by
Hodge dual transformation of Eqs. (23.2) and (23.6). The Hodge dual of the
orbital equation (23.2) is:

∇ · h = 4πGρ̃m (23.13)

where:

h = c2(T̃ 010i + T̃ 020j + T̃ 030k) (23.14)
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and

ρ̃ = J̃0
1

01 + J̃0
2

02 + J̃0
3

03. (23.15)

The tilde denoting Hodge dual transformation. The Hodge dual of the spin
equation (23.6) is:

∇ × g +
1
c

∂h

∂t
= 4πGJ̃m (23.16)

where:

g = c2(T̃ 332i + T̃ 113j + T̃ 221k) (23.17)

and

h = c2(T̃ 101i + T̃ 202j + T̃ 303k) (23.18)

and where the Hodge dual current is:

J̃m = J̃Xi + J̃Y j + J̃Zk, (23.19)

J̃X = J̃1
0

01 + J̃1
2

21 + J̃1
3

31 (23.20)

J̃Y = J̃2
0

02 + J̃2
1

12 + J̃2
3

32 (23.21)

J̃Z = J̃3
0

03 + J̃3
1

13 + J̃3
2

23. (23.22)

These four equations of gravitomagnetism are valid for any field strength and
are generally covariant. They describe the interaction of field and matter. If
the field is propagating infinitely distant from its source the four equations
reduce to the free field or vacuum gravitomagnetic equations:

∇·h0 = 0, (23.23)

∇×g0 +
1
c

∂h0

∂t
= 0, (23.24)

∇·g0 = 0, (23.25)

∇×h0 − 1
c

∂g0

∂t
= 0, (23.26)

with plane wave solutions indicating gravitational radiation. In the laboratory
the gravitational radiation is about twenty one orders of magnitude weaker
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than electromagnetic radiation. The gravitomagnetic field/potential relations
are:

g0 = −∇Φ − c
∂q

∂t
+ Φω − cω0q, (23.27)

h0 = c2(∇ × q − ω × q), (23.28)

where q is the vector potential of the gravitomagnetic equations and where
Φ is the scalar potential of the gravitomagnetic equations. Here ω◦ is the
spin connection scalar and ω is the spin connection vector. In the Newtonian
limit:

g0 → −∇Φ. (23.29)

The generally covariant equations of classical electromagnetism in ECE
theory have the same vector structure as the standard Maxwell Heaviside
equations but are written as follows in a space-time with torsion and curva-
ture. The Coulomb law of ECE theory is an orbital torsion law:

∇ · D = ρ (23.30)

where the electric displacement is:

D = D010i + D020j + D030k (23.31)

and where the electric charge density is:

ρ = J0
1

10 + J0
2

20 + J0
3

30. (23.32)

The Ampère Maxwell law is a spin torsion law:

∇ × H − ∂D

∂t
= J (23.33)

in which the magnetic field strength is:

H = H332i + H113j + H221k (23.34)

and the electric displacement is:

D = D110i + D220j + D330k. (23.35)
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The electric current density in Eq. (23.33) has the same form as in Eq. (23.19)–
(23.22):

J = JXi + JY j + JZk. (23.36)

The other two laws of ECE classical electrodynamics are the Gauss law of
magnetism, an orbital law:

∇ · B = 0 (23.37)

in which the magnetic flux density is:

B = B010i + B020j + B030k (23.38)

and the Faraday law of induction, a spin law where:

∇ × E +
∂B

∂t
= 0 (23.39)

and:

E = E332i + E113j + E221k, (23.40)

B = B101i + B202j + B303k, (23.41)

The field potential relations are:

E = −∇φ − ∂A

∂t
+ φω − ω0A (23.42)

and

B = ∇ × A − ω × A (23.43)

in which φ is the scalar potential and A is the vector potential.

23.3 Derivation of the Generally Covariant Continuity
Equation

In this section it is shown that the continuity equation is:

Dµja
ν = 0 (23.44)
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where ja
ν is a vector valued differential one-form defined by:

ja
ν = −ε0kTAa

ν . (23.45)

Here, the generally covariant Proca equation of ECE theory is [1–12]:

(� + kT )Aa
ν = 0. (23.46)

where k is the Einstein equation, T is the index reduced canonical energy-
momentum density, and where the potential is defined by the fundamental
ECE postulate:

Aa
ν = A(0)qa

ν (23.47)

where qa
ν is the Cartan tetrad. In Eq. (23.45) ε0 is the vacuum permittivity.

In the limit of Minkowski space-time:

kT →
(mc

�

)2

=
1
λ2

c

(23.48)

where m is the photon mass, � is the reduced Planck constant and where λc

is the Comton wavelength.
Therefore Eq. (23.44) is an example of the tetrad postulate [1–12]:

Dνqa
µ = 0. (23.49)

The structure of the inhomogeneous ECE field equation is:

∂µFκµν = jκ
µ

µν/ε0 (23.50)

therefore by index contraction the charge-current density is a rank two tensor
in ECE theory:

jκν = jκ
µ

µν . (23.51)

Lowering an index:

jκ
ν = jκ

µ
µ
ν (23.52)

and by definition [1–12]:

ja
ν = qa

κjκ
ν . (23.53)
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Therefore in general, Eq. (23.50) is:

∂µF aµ
ν = ja

ν /ε0 (23.54)

Proceed now with reference to the Proca equation in standard physics. The
Proca equation in standard physics is defined in a Minkowski space-time by:

∂µFµν = jν/ε0 = −
(mc

�

)2

Aν (23.55)

where the field tensor is:

Fµν = ∂νAν − ∂νAµ. (23.56)

Using Eq. (23.56) in Eq. (23.55) we obtain the Lorentz covariant Proca equa-
tion of standard physics: (

� +
(mc

�

)2
)

Aν = 0 (23.57)

provided that:

∂µAµ = 0. (23.58)

The latter “Lorenz gauge” result follows from the continuity equation of stan-
dard physics:

∂µjµ = 0 (23.59)

and Eq. (23.55). It is well known that if the photon mass is not zero:

m �= 0 (23.60)

the Proca equation is not gauge invariant, and the “Lorenz gauge” is not
arbitrary. This leads to the collapse of gauge theory if the photon mass is not
identically zero. In general relativity on the other hand the photon mass is
identically non-zero, as seen in the bending of light by gravity for example.
Therefore in ECE theory the gauge principle is rejected and the potential is
considered to be physically meaningful, as observed in such phenomena as
ESR and NMR, and in the Aharonov Bohm effects [1–12].

The generally covariant Proca equation (23.46) is based on

DνAa
µ = 0 (23.61)
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from which:

∂µ
(
∂µAa

ν + ωa
µbA

b
ν − Γλ

µνAa
λ

)
= 0 (23.62)

i.e. :

�Aa
µ =

jνa

ε0
= ∂µ(Γλ

µbA
a
λ − ωa

µbA
b
ν). (23.63)

This equation is the correctly covariant form of the standard physics equation:

�Aµ =
jµ

ε0
(23.64)

whose solutions are the Lienard Wiechert potentials [13]. In ECE theory:

F aµν = ∂µAaν − ∂νAaµ + ωaµ
b Abν − ωaν

b Abµ (23.65)

Using this equation with Eq. (23.54) it is found that:

(� + kT )Aaν = ∂µ(∂νAaµ − ωaµ
b Abν + ωaν

b Abµ) = 0 (23.66)

which is the generally covariant “Lorenz gauge” condition, but is now a
rigorous geometrical requirement and not an arbitrary choice of gauge. If
Eq. (23.66) is compared with the tetrad postulate:

DνAaµ = ∂µAaν + ωaν
b Abµ − ΓλνµAa

λ = 0 (23.67)

it is found that Eq. (23.66) is true if:

ωaµ
b Abν = ΓλνµAa

λ (23.68)

which may be taken as the condition for Eq. (23.45).
The charge current density from Eq. (23.45) may be written as:

ja
µ = j(0)qa

µ (23.69)

where:

j(0) = −ε0kTA(0). (23.70)

An example of Eq. (23.69) is:

jκν = j(0)qκν (23.71)



416 23 The Continuity Equation in ECE Theory

with:

Dµjκν = 0. (23.72)

This is the continuity equation associated with Eq. (23.50). The covariant
derivative in Eq. (23.44) may be replaced by the ordinary derivative if:

ωa
µbj

b
ν = Γλ

µνja
λ (23.73)

and under this condition, also that of Eq. (23.68), the continuity equation is:

∂µja
ν = 0. (23.74)

A special case of Eq. (23.74) is:

∂µjκµ = 0 (23.75)

and in ECE theory [1–12]:

ρ =
1
c
j00,J = j11i + j22j + j33k (23.76)

so:

1
c

∂j00

∂t
+

∂j11

∂X
+

∂j22

∂Y
+

∂j33

∂Z
= 0 (23.77)

which in vector notation is the continuity equation:

∂ρ

∂t
+ ∇ · J = 0 (23.78)

but now written in a space-time with torsion and curvature as required, and
not in the flat or Minkowski equation of standard electrodynamics, which is
Lorentz covariant but not generally covariant as required.
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