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Abstract

During the development of ECE theory, several aspects of Cartan ge-
ometry were touched. In this article, we present the big picture, how
physics evolves over the entire range of Cartan geometry. The tetrad cor-
responds to a given potential, and over several stages all types of connec-
tions are computed up to the torsion forms, which correspond to physical
force fields. We put together all relevant equations of Cartan geometry.
The potential is simplified by using a novel restriction to polarization.
This simplification is translated to the tangent space of Cartan geometry
by choosing the unit vectors of this space to be parallel to those in the
base manifold. This leads to a diagonal tetrad matrix. Examples are
given for some physical systems. In particular, a new justification for the
Evans B(3) field is found.
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1 Introduction

The development of ECE theory is based on Cartan geometry. Elements of
geometry are interpreted as physical quantities by applying the ECE axioms
to the geometry. This is basically multiplying the geometrical quantities by
constants with physical dimensions so that equations of physics are obtained.
This has been worked out in great detail in the course of ECE development
[1]- [6]. All papers concentrate on special aspects. In this article, we cover
a span over the whole range of Cartan geometry. Starting with the tetrad,
which corresponds to the physical potentials, we end up with electromagnetic or
gravitational field quantities. The great progress is that all kinds of geometrical
tensors and connections are computable in this path. The earlier difficulty was
to find the Christoffel (Gamma) connections for a given problem. This is barely
possibly without mathematical tools. In this paper we use computer algebra to
solve the equations for the Gamma and spin connections.
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The equations are of algebraic type. For the Gamma connections, a lin-
ear equation system has to be solved. Thus, the complexity is brought into
the development not by complicated mathematics, but by the large number of
equations and variables to be handled. This is the reason, why, in Einsteinian
theory, only very simple systems (mostly with spherical symmetry) could be
handled in the past.

A second difficulty arises from the fact that Cartan geometry introduces so-
called polarization indices. These indices arise from the usage of tangent space
of the Cartan base manifold. So, an electric field vector E becomes an indexed
vector Ea in ECE theory. Several methods have been developed to get rid of
this index for physical situations, for example, using only one index or averaging
over all index values [7]. In this paper, we introduce another method: assuming
that the basis vectors of base manifold and tangent space are parallel. Then the
tetrad is reduced to a diagonal matrix and the polarization index is identical to
the coordinate index.

In section 2, we summarize the equations of ECE theory used, and in section
3, we give some examples of the overall method. Additional, more mathematical,
examples can be found in section 3 of the ECE textbook [8].

2 The full path through Cartan geometry

2.1 Listing the equations

We remember that the ECE axioms connect the electromagnetic potential Aaµ
and electromagnetic field tensor F aµν with the tetrad qaµ and torsion tensor
T aµν :

Aaµ := A(0)qaµ , (1)

F aµν := A(0)T aµν , (2)

or in form notation:

Aa := A(0)qa, (3)

F a := A(0)T a, (4)

where A(0) is a constant introducing physical units. Since Aaµ is a vector

potential, A(0) has the units of V s/m. Torsion is defined in units of 1/m, and
consequently, F has units of a magnetic field (Tesla or V s/m2). qa is a 1-form
and T a is a 2-form. Correspondingly, the potential Aa is a 1-form and the field
tensor F a is a 2-form of Cartan geometry, consisting of the field components Ea

and Ba.
We start the computational part with a given potential, so the tetrad ele-

ments are known.
From the tetrad, we can compute the metric tensor gµν and its contravariant

counterpart gµν , which, in algebraic terminology, is the inverse matrix of gµν :

gµν = n qaµq
b
ν ηab, (5)

gµν =
1

n
qµaq

ν
b η

ab. (6)
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ηab is the metric of Minkowski space and n the space dimension, normally 4.
Metric compatibility enables us to determine the Γ connection from the

linear equation system

Dσgµν = ∂σgµν − Γλσµgλν − Γλσνgµλ = 0. (7)

As discussed in great detail in the ECE papers, the Γ connection is asymmetric
in its lower indices, and the relevant parts are the antisymmetric parts on the
non-diagonal elements. Therefore, we require explicitly

Γρµν = −Γρνµ (8)

for all µ 6= ν. Then the solution is unique up to four undetermined constants,
for which suitable choices have to be made in specific applications.

The spin connection is computable from the tetrad elements and the Γ con-
nection:

ωaµb = qaνq
λ
bΓ

ν
µλ − qλb∂µqaλ . (9)

With these prerequisites, we can compute the curvature and torsion tensors:

Rλµνρ = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ, (10)

Tλµν = Γλµν − Γλνµ. (11)

For ECE theory, we need the curvature and torsion forms, which are obtained
from the above tensors by

Rabµν = qaρq
σ
bR

ρ
σµν , (12)

T aµν = qaλT
λ
µν . (13)

Since the vector components refer to the contravariant elements in the force
field tensor F , we have to raise the indices in T :

T aµν = ηµρηνσT aρσ , (14)

with the inverse Minkowski metric, which is identical to the covariant form:

ηab = ηab. (15)

From ECE theory, the electromagnetic field form F is

F aµν =


F a00 F a01 F a02 F a03

F a10 F a11 F a12 F a13

F a20 F a21 F a22 F a23

F a30 F a31 F a32 F a33

 (16)

=


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 .
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With Eq. (2) we can identify

A(0)


T a00 T a01 T a02 T a03

T a10 T a11 T a12 T a13

T a20 T a21 T a22 T a23

T a30 T a31 T a32 T a33

 =
1

c


0 −Ea1 −Ea2 −Ea3

Ea1 0 −cBa3 cBa2

Ea2 cBa3 0 −cBa1

Ea3 −cBa2 cBa1 0

 ,
(17)

which relates the components of Ea and Ba directly to certain torsion elements:Ea1

Ea2

Ea3

 = cA(0)

T a10

T a20

T a30

 , (18)

Ba1

Ba2

Ba3

 = A(0)

−T a23

T a13

−T a12

 . (19)

In addition to the above derivation, there are the Hodge dual quantities to
be computed. The Hodge duals of F have the same dimensions as F , but this
is true only in four dimensions. Therefore, we restrict consideration to a four-
dimensional space. As derived in [7], the dual of the Γ connection, called Λ, and
the resulting spin connection ω(Λ) are

Λλµν =
1

2
|g|−1/2

gραgσβερσµνΓλαβ , (20)

ω a
(Λ) µb = qaνq

λ
bΛ

ν
µλ − qλb∂µqaλ , (21)

Figure 1: Interdependencies of variables for Cartan geometry.
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with g being the determinant of the metric tensor. The Hodge dual curvature
and torsion are, in analogy to their definitions with the Γ connection:

R̃λµνρ = ∂µΛλνρ − ∂νΛλµρ + ΛλµσΛσνρ − ΛλνσΛσµρ, (22)

T̃λµν = Λλµν − Λλνµ. (23)

Thus, all relevant variables of Cartan geometry can be computed by Eqs.
(5-14), and the resulting force fields by Eqs. (18-19). The tetrad, specifically
the potential, has to be given for input. The interdependencies of variables are
depicted in Fig. 1 in the form of a graph.

2.2 Simplification of the 4-potential

In ECE theory, the 4-vector of the potential is given by

Aaµ =


φa

c
Aa1

Aa2

Aa3

 (24)

where φa is the scalar potential and Aa1, Aa2, Aa3 are the components of the
vector potential, which in vector notation can be written as

Aa =

Aa1

Aa2

Aa3

 . (25)

This corresponds to a vector potential in relativity theory with an additional
polarization index a. The 0-component is the scalar potential

Aa0 =
φa

c
(26)

where c is the vacuum velocity of light and a is again the polarization index.
Aaµ is a 2-component quantity and can be written in matrix form as

(Aaµ) =


φ(0)

c
φ(1)

c
φ(2)

c
φ(3)

c

0 A(1)1 A(2)1 A(3)1

0 A(1)2 A(2)2 A(3)2

0 A(1)3 A(2)3 A(3)3

 . (27)

The indices in parentheses are the Latin (tangent space) indices. The first
column does not contain elements of the vector potential because the latter is
a pure space-like quantity. In the following, we assume that the basis vectors
of the base manifold are parallel to the base vectors of the tangent space. Then
the indices of both spaces have a one-to-one correspondence a↔ µ and we have
only terms with a = µ, and no mixed index terms. Eq. (27) then takes the form

(Aaµ) =


φ(0)

c 0 0 0
0 A(1)1 0 0
0 0 A(2)2 0
0 0 0 A(3)3

 . (28)
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Omitting the polarization index, we can write (Aaµ) with the “conventional”
scalar potential φ and vector potential A:

(Aaµ) =


φ
c 0 0 0
0 A1 0 0
0 0 A2 0
0 0 0 A3

 . (29)

Then the tetrad is defined by Eq. (1), however, Aaµ is to be given in its
covariant form. Therefore, we first have to translate the vector potential Aµ to
its covariant form

Aµ = ηµνA
ν (30)

which gives a sign change in the components of the A vector. Finally, we have

(qaµ) =
(Aaµ)

A(0)
=

1

A(0)


φ
c 0 0 0
0 −A1 0 0
0 0 −A2 0
0 0 0 −A3

 . (31)

3 Examples

We present some examples of static and dynamic potentials and compute all
quantities of Cartan geometry, up to the electric and magnetic fields.

3.1 Coulomb potential

One of the simplest and most important cases of electrodynamics is the Coulomb
potential. In 4-vector notation, the potential is the 0-component

A0 =
φ(r)

c
=

1

c

qe
4πε0r

(32)

where qe is the central point charge and r is the radial coordinate of a spherical
coordinate system

(Xµ) =


t
r
θ
φ

 . (33)

According to Eq. (31), the potential corresponds to the first diagonal element
of the tetrad:

φ(r) = c A(0)q
(0)

0 . (34)

Inserting the potential into the q matrix gives

(qaµ) =
1

2

(Aaµ)

A(0)
=

1

A(0)


φ(r)
c 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (35)
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which is a singular matrix. Cartan Geometry, however, is only defined with
non-singular tetrads. Therefore, a vector potential is necessarily required, in
addition to a scalar potential. We choose the simplest form, a constant vector
potential, which gives no magnetostatic field. The final form of the tetrad then
is

(qaµ) =
1

2


C0

r 0 0 0
0 −C1 0 0
0 0 −C2 0
0 0 0 −C3

 , (36)

where we have replaced

C0 =
qe

A(0) c 4πε0
(37)

and the Ci are arbitrary constants for i = 1, 2, 3. For simplicity of results, we
assume Ci > 0 and omit the factors A(0) and c. Then, the vector potential is

A =

C1

C2

C3

 . (38)

Applying Cartan geometry, Eqs. (5-8) give Γ connections with four unspec-
ified parameters D1 to D4:

Γ0
01 =

1

r
(39)

Γ0
10 = −1

r

Γ0
12 =

D4 C2
2r2

C0
2

Γ0
13 = −D3 C1

2r2

C0
2

. . .

It is possible to set the Di to zero:

D1 = D2 = D3 = D4 = 0. (40)

Then, only three non-vanishing connections remain:

Γ0
01 =

1

r
, (41)

Γ0
10 = −1

r
, (42)

Γ1
00 =

C2
0

C2
1 r

3
. (43)

The first pair is antisymmetric, while the third connection is a diagonal element
which does not contribute to torsion.
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Applying Eqs. (9-14), the non-vanishing spin connections are

ω
(0)

0(1) = − C0

C1 r2
, (44)

ω
(1)

0(0) = − C0

C1 r2
, (45)

which are antisymmetric indices in a and b. (Observe that the upper index
a has to be lowered for comparison, which gives a sign change for the second
connection element.) The Hodge duals of the Γ connection are

Λ0
23 = − C2C3

|C0|C1
, (46)

Λ0
32 =

C2C3

|C0|C1
, (47)

being only constants, and the non-zero Λ spin connections are

ω
(0)

(Λ) 1(0) =
1

r
, (48)

ω
(0)

(Λ) 2(3) =
C0C2

|C0|C1r
, (49)

ω
(0)

(Λ) 3(2) = − C0C3

|C0|C1r
. (50)

It is important to note that the connection ω
(0)

(Λ) 1(0) has the form that has

already been derived in early UFT papers. In those papers, the spin connections
Γ and Λ had not been discerned, and which one was meant depended on the
field equations used. In the inhomogeneous equations (Coulomb and Ampère-
Maxwell law), the Λ spin connections appear.

The non-vanishing torsion and curvature tensor elements are

T 0
01 = −T 0

10 =
2

r
, (51)

R0
101 = −R0

110 =
2

r2
, (52)

R1
001 = −R1

010 =
2C2

0

C2
1r

4
, (53)

which are all antisymmetric in the last two indices. The same holds for the
torsion and curvature forms:

T
(0)

01 = −T (0)
10 =

C0

r2
, (54)

R
(0)

(1)01 = −R(0)
(1)10 = − 2C0

C1r3
, (55)

R
(1)

(0)01 = −R(1)
(0)10 = − 2C0

C1r3
. (56)

The final results, according to Eqs. (18-19), are the electric fields

E(0) = cA(0)

C0

r2

0
0

 , (57)

E(1) = E(2) = E(3) = 0, (58)
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and the magnetic fields

B(0) = B(1) = B(2) = B(3) = 0. (59)

Only the electric 0-component of polarization is not a zero vector, and all po-
larizations of the magnetic field vanish. This is exactly the classical result

E(0) = E =
qe

4πε0 r2
. (60)

3.2 Vector potential of a straight current wire

The next example is the vector potential of an infinite straight current wire [9].
In cylindrical coordinates, the vector potential is given by

A =

ArAθ
AZ

 =

 0
0

C3 log(r)

 . (61)

The wire is placed in the Z direction. The constant C3 is defined by

C3 = − πa
2jZ

2πε0c2
(62)

where a is the thickness of the wire, jZ the current, and ε0 the vacuum permit-
tivity.

Applying the same mechanism as in the preceding example leads to the
tetrad matrix

(qaµ) =
1

2

1

A(0)


C0 0 0 0
0 −C1 0 0
0 0 −C2 0
0 0 0 −C3 log(r)

 . (63)

We assume C0 > 0, C1 > 0, C2 > 0, C3 < 0, whic is similar to the approach in
the former example. The equations of Cartan geometry are applied as described
before. We present only the spin connection results:

ω
(1)

3(3) = −ω(3)
3(1) =

C1

C3 r
, (64)

and

ω
(3)

(Λ) 0(2) =
C0

C1r| log(r)|
, (65)

ω
(3)

(Λ) 1(3) = − 1

r log(r)
, (66)

ω
(3)

(Λ) 2(0) =
C2

C1r| log(r)|
. (67)

We have no antisymmetry for the spin connection ω(Λ) again. The resulting
electric fields are

E(a) = 0, (68)
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and the magnetic fields are

B(0) = B(1) = B(2) = 0, (69)

with the third polarization field being

B(3) =

 0
−C3

r
0

 . (70)

This is exactly the field obtained from the classical calculation

B = ∇×A. (71)

3.3 Circularly polarized electromagnetic wave

The third example is a rotating electromagnetic field in the form of a circularly
polarized wave. The basis vectors of such a wave are rotating in the XY plane
of cartesian coordinates. In classical electromagnetism there is no Z component,
but in the Evans B(3) field theory there is one. The vector potential is also a
rotating field, phase shifted by 90 degrees in the XY plane. We define the tetrad
matrix as before by

(qaµ) =
1

2


1 0 0 0
0 − cos(ωt− kR) − sin(ωt− kR) 0
0 sin(ωt− kR) − cos(ωt− kR) 0
0 0 0 −1

 (72)

with time angular velocity ω, wave vector k = [k1, k2, k3] and coordinate vector
R = [X,Y, Z]. When the constants appearing in the Γ connection are set to
zero as before, no electric and magnetic fields come out. However, there are
spin connections which are identical for the Γ and Λ connection:

ω
(1)

0(2) = −ω(2)
0(1) = −ω

c
, (73)

ω
(1)

1(2) = −ω(2)
1(1) = k1, (74)

ω
(1)

2(2) = −ω(2)
2(1) = k2, (75)

ω
(1)

3(2) = −ω(2)
3(1) = k3. (76)

The metric g is identical to the Minkowski metric. This shows that a field
defined in “flat” space can have a spin connection of general relativity.

The situation changes when not all of the constants inferred by the Γ con-
nection are set to zero. We define

D1 := κ 6= 0 (77)

where κ is a wave number, for example κ = 1/m. The other constants remain
zero. While the metric is the Minkowski metric again, because it does not
depend on the connections, more terms in the spin connections appear. Most
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interesting is the final result for the electric and magnetic fields:

E(1) = A(0)c κ

− sin(ωt− kR)
cos(ωt− kR)

0

 , (78)

E(2) = A(0)c κ

− cos(ωt− kR)
− sin(ωt− kR)

0

 , (79)

and

B(0) =

 0
0

A(0)κ

 . (80)

All other fields are zero. The fields have the right dimensions of V/m and Tesla.
The electric fields are rotated against the potential vectors as expected. Highly
interesting is that a constant magnetic field in the Z direction appears, which
in principle is the B(3) field of Evans. This is a consequence of the fact that the
tetrad always has to be non-singular. Therefore, at least one component Aa3

has to be present, which is the case in Eq. (72).

3.4 Discussion and conclusions

A full computational path through all stages of Cartan geometry was shown,
thus demonstrating that ECE theory is completely workable. The examples
that were presented are analytical, and a simplified method with a diagonal
tetrad was introduced, choosing the unit vectors of the tangent space of Cartan
geometry to be parallel to those in the base manifold, which leads to a diagonal
tetrad matrix.

In more complicated cases, the basis of the tangent space cannot be chosen
to be parallel to the basis of the base manifold. This leads to non-diagonal
tetrad elements, which we have already seen in the third example, the circularly
polarized electromagnetic wave. In these cases, in order to find meaningful
values, the free parameters obtained from the linear equation systems have to
be defined in a way that meaningful force fields result. This point is critical,
and requires mindful consideration of approaches.

As an alternative to analytical methods, calculations could be completely
numerical. The tetrad would then be defined, for each point in space, by a
matrix consisting of pure numbers, and the derivatives would be computed nu-
merically. All equations would have to be computed per space point, which
would be computationally intensive and could require high-performance com-
puters. The complexity, however, would not exceed that of FEM calculations,
for example.

In future development, alternative approaches will be explored. For exam-
ple, instead of starting with a physical potential, we can consider the force fields
as given quantities. Then the question becomes: “what are the geometric vari-
ables leading to this result, and what is the corresponding potential?” Another
interesting question would be: “how do the physical fields need to be defined in
order to obtain special forms of spin-connections?” These questions might be of
technological interest.
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