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Effect of gravitation on the inverse Faraday 
effect and Faraday effect: 
Multiple field interactions in ECE theory

M.W. Evans1

Alpha Institute for Advanced Studies (www.aias.us)

The effect of gravitation on the inverse Faraday effect and Faraday effect 
is considered as an example of multiple field interactions in Einstein Cartan 
Evans (ECE) field theory. The interactions of fundamental fields are considered 
on classical, semi-classical and fully quantized levels. For example, the fully 
quantized interaction between electron, photon and graviton is considered. In 
its classical limit, the interaction of photon and graviton is shown to produce 
the light deflection due to gravitation.
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1.	 Introduction

Recently, a generally covariant unified field theory has been developed [1-12] 
from standard Cartan geometry [13, 14]. It is known as Einstein Cartan Evans 
(ECE) field theory and has several fundamental advantages (www.aias.us) over 
the standard model. One major advantage is the ability of ECE theory to describe 
multiple field interactions on classical, semi-classical and quantum levels. In this 
paper an example of a multiple field interaction is given – that between the 
fermion matter field (exemplified by an electron), the electromagnetic field, and 
the gravitational field. In Section 1.2 this three field interaction is developed on 
the classical level and exemplified by the effect of gravitation on the inverse 
Faraday effect (IFE) and Faraday effect (FE). In Section 1.3, the difference is 
emphasized between the motion of an electron in a static magnetic field and 
an electromagnetic field. In Section 1.4 the self consistency of the classical 
method is checked by comparing a direct integration method with a Hamilton 
Jacobi method. In Section 1.5 the calculation is extended to the quantum level 
by considering the interaction between an electron and photon using ECE wave 
1e-mail: emyrone@aol.com
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equations. In Section 1.6 the electron photon graviton interaction is considered 
on the quantum level, and in Section 1.7 the light deflection due to gravitation 
is obtained straightforwardly on the classical level.

1.2	 Classical limit: Effect of gravitation on IFE and FE

In the first approximation the effect of gravitation on the IFE and FE can be 
developed from previous work on the ECE theory of IFE and FE by using the 
rule [1–12]:

( )
1
2m kT

e
→


	
(1)

where m is the electron mass, h is the reduced Planck constant, c is the speed 
of light, k is the Einstein constant and T is the scalar canonical energy momen
tum density. This rule originates in the correspondence principle applied to the 
ECE wave equation [1–12]:

( ) akT qµ+ 	  (2)

where qa is the tetrad wave-function and also the fundamental field. In general 
this is a unified field, so T and qa contain information about the interaction of 
any or all of the fundamental fields of physics: gravitational, electromagnetic, 
weak, strong and matter fields. If the fermion field is considered for example, 
it becomes free of the influence of any other fundamental field when:

2mckT  =  
  	

 (3)

from which follows Eq. (1). When the fermion (e.g. electron) is free of any 
other field its mass is m. In the presence of gravitation for example its mass 
changes according to Eq. (1) and in general its mass changes in the presence 
of any other field, including the electromagnetic field. The fermion (electron) 
is no longer free because it is influenced by a gravitational field. To consider 
the effect of gravitation on the IFE and FE requires a three field interaction: 
the effect of gravitation on a fermion interacting with the electromagnetic field. 
The gravitational influence may be developed in a series of approximations. 
In the first approximation it may be assumed that the electromagnetic field is 
not affected by the gravitational field, and in this approximation Eq. 1) is used 
with the minimal prescription [1-12, 15]. In a better approximation, developed 
in later sections of this paper, the fermion and electromagnetic fields are both 
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affected by the gravitational field. On the fully quantum level this requires the 
simultaneous solution of three ECE wave equations.

In the classical minimal prescription of ECE field theory, the complex valued 
four potential may be defined by:

( ) ( ) ( ) ( )0 1 2 3:A A A A Aµ µ µ µ µ= + + + 	  (4)

where:

a = (0), (1), (2), (3) 	 (4a)

are polarization indices. The time-like index is (0), the three space-like indices 
by (1), (2) and (3). Here (1) and its complex conjugate (2) are transverse and 
(3) is longitudinal. The potential in ECE theory is manifestly covariant, so that 
all four indices are physical. It is also possible to consider individual components 
of Aμ in the minimal prescription. An example is the transverse plane wave:

( )
( )

( ) 0

0
1

2
iA i ij e φ= −A

	
 (5)

where

0 t kZφ = ω − 	 (6)

is the electromagnetic phase. Here ω is the angular frequency at instant t and k 
the wave-number at point Z. In general the four-potential is:

,A
c

µ φ =  
 

A
 	

(7)

where φ is the scalar potential and A the vector potential. In the first approx
imation defined already, φ and A are not changed, but m is changed wherever 
it occurs using Eq. (1). In previous work [1-12] it has been shown from direct 
integration of the classical Einstein equation with minimal prescription that the 
relevant kinematics of the IFE and FE for the free classical electron (the classical 
limit of the Dirac electron) are as follows. The angular momentum is:

0 0
2

0

r p er
ee dt v dt
m

= γ × + ×

+ × + ×
γ∫ ∫

J A

A A A
	

(8)
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where r0 and v0 are respectively the initial position and velocity of the electron, 
e is the magnitude of the charge on the electron, m is the mass of the electron, 
A is the electromagnetic vector potential, and:

1
2 2

21 u
c

−
 

γ = − 
  	

(9)

where u is the constant speed of one frame moving with respect to another in a 
Lorentz boost [13,15,16]. For a plane wave such as Eq. (5) an analytical solution 
may be obtained for the magnitude of the angular momentum:

( )0 0 .eAJ r mv eA
m

 
= + γ + γ ω  	

(10)

The kinetic energy of the electron is [1–12]:

( )
( )

2 2
0

2 1
mv eA c

T
mc e
γ +

=
+ γ + φ 	

 (11)

and its angular velocity is:

( )

( )( )

2
0

2
0 1

mv eA c
eAr mc e
m

γ +
Ω =

 
+ + γ + φ γ ω  	

(12)

from which the angular velocity of the electromagnetic field can be expressed 
in terms of Ω as:

( )0

eA
m x r

Ω
ω=

γ −Ω 	
(13)

where the factor x is:

( )
( )

2
0

2 .
1

mv eA c
x

mc e
γ +

=
+ γ + φ 	

(14)

Therefore all these kinematic equations are affected by gravitation according 
to Eq. (1), i.e. the electron mass is changed by gravitation wherever it occurs, 
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and in consequence the kinematic quantities are all affected by gravitation. This 
shows that both the IFE and FE are effected by gravitation.

In a better approximation the effect of gravitation on the minimal prescription 
itself is considered. Therefore Aμ as well as pμ is changed by the presence of 
the gravitational field. Therefore gravitation changes A and φ as follows:

( )
1
2 ,kT

mc
 →  
 

A A
	

 (15)

( )
1
2 .kT

mc
 φ→ φ 
 



	
(16)

In ECE theory the relation between the electromagnetic potential and the 
electromagnetic field is also changed by gravitation because the latter implies 
the existence of a non-zero homogeneous current. In the standard notation of 
differential geometry [13], the homogeneous current is defined by:

( )

( )
0

0

:a a b a b
b b

Aj R q T= ∧ −ω ∧
µ 	

 (17)

where µ0 is the vacuum magnetic permeability (S.I. units), Rb
a is the curvature 

form, ω is the spin connection and Tb is the torsion form [1–12]. Therefore, 
various levels of approximation may be used to describe field interactions in ECE 
theory. The whole of physics can be defined as the interaction of fields. ECE 
allows this to be considered in a generally covariant manner as demanded by 
the basics of relativity. The latter is by far the most precise theory in physics, 
so the ECE methods are well founded in experiment.

1.3 	 Motion of the classical electron in a static magnetic field and a 
radiated rlectromagnetic field

Before proceeding to higher levels of approximation in multiple field interactions 
the differences between the motion of an electron in a static magnetic field and 
in a radiated electromagnetic field are emphasized here on the classical level. 
This is to emphasize that a classical magnetic field has important differences 
from the radiated electromagnetic spin field of ECE theory. The latter is an 
observable of IFE and FE and is one of the indications that electrodynamics is a 
generally covariant sector of unified field theory. The standard model description 
of a static magnetic field must be developed in ECE theory [1–12] to include 
the spin connection, but the standard model description is given here for the 
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sake of illustrating the differences in electron motion.
From the minimal prescription the angular momentum of the electron in the 
static magnetic field is:

J = r × p = er × A 	 (18) 

where, in the standard model, the static magnetic flux density is:

1, .
2

r= ∇× = ×B A A B
	

(19) 

Therefore the electron's angular momentum magnitude is:

J = erA = er2B 	 (20)

and its kinetic energy is:

2 2

.
2

e AT
m

=
	

(21)

Its angular velocity is:

2 .T eA e B
J rm m

Ω = = =
	

 (22)

Therefore, its angular momentum magnitude can be written as:

J e= Φ 	 (23)

where:

2r BΦ = 	 (24)

is the magnetic flux in weber. The magnetic flux density is B (in tesla or weber 
per square meter). The quantum of flux is therefore:

.
e

Φ =


	  (25)

The magnetic dipole moment induced by a static magnetic field in the stan
dard model is therefore
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2 2

2 2
e e r
m m

 
= =  

 
m J B

	
 (26)

where

2 2

:
2
e r

m
χ =

	
 (27)

is the static magnetic susceptibility.
It is seen from a comparison with Section 1.2 that these quantities are dif

ferent from the corresponding ones for an electron in an electromagnetic field. 
Using the Hamilton Jacobi method for example [1–12] the angular momentum of 
an electron in a circularly polarized electromagnetic field may be expressed as:

( )
( )

( )( )

02 2
3

12
0 22 2 2 2

e c B

m e B

 
 

=  
ω   ω + 

J B

	

 (28)

where B(3) is the ECE spin field [1–12]. The latter originates in the spinning 
of space-time itself and is a radiated field. The static magnetic field is not a 
radiated field. The angular velocity of the electron in the electromagnetic field 
from the Hamilton–Jacobi method is [1–12]:

( )
1

2 20
2 .eB

m

  
 Ω = ω +       	

 (29)

From Eq. (8), the angular momentum of the electron in a radiated plane wave is:

( ) ( ) ( )
2

3 1 2ieJ dt
m

= − ×
γ ∫ A A

	
 (30)

where:

( ) ( )1 2 ∗=A A 	  (31)

in which * denotes complex conjugate. So:
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( )
( )

( )
0 22

3 3 .e AJ e
m

=
γ ω 	

(32)

Using the fundamental optical relation [17]:

( ) ( )0 0cA B=
ω 	

(33)

and:

(3) (0) (3) (0)=   B B=B e k 	  (34)

it is found that the angular momentum from the direct integration method [1–12] is:

( ) ( ) ( )
2 2

3 0 3
3

e c B
m

=
γ ω

J B
 	

(35)

In the non-relativistic limit:

( )01,m eBγ → ω 	  (36)

and Eq. (35) becomes Eq. (28) of the Hamilton Jacobi method. A fuller comparison 
of the Hamilton Jacobi method and the direct integration method of describing 
the relativistic motion of an electron in an electromagnetic field is given in the 
next section. From Eq. (35) the angular momentum magnitude is

( )
22 2

0 2 0
3 2

e ce c IJ B
m m

µ  = =  γ ω γ ω ω  	
 (37)

where [17]:

( )0 2

0

cI B=
µ 	

 (38)

is the power density in watts per square meter of the electromagnetic field. The 
induced magnetic dipole moment due to the B(3) spin field is:
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( ) ( ) ( )
2 2

3 0 3
2 32

e c B
m

 
=  γ ω 

m B
	

(39)

where

3 2

2 3:
2

e c
m

β =
γ ω 	

(40)

is the magnetic hyper-magnetizability of one electron. It is seen that the B(3) field 
interacts through this property while the static magnetic field interacts through 
the one electron static susceptibility.

1.4	 Comparison of direct integration and Hamilton Jacobi Methods

The angular momentum magnitude from the direct integration method gives:

( )( ) ( )( )0 0
0 0

1J m r eA mv eA
m

= γ ω + γ +
γ ω 	

(41)

where r0 and v0 are the initial position and velocity of the electron. The Hamilton 
Jacobi method [1-12] gives:

( )

( )( )

0 22

int 1
0 22 2 2 2

.ce AJ
m c e A

=
ω +

	

 (42)

 
The interaction terms of Eq. (41) are:

( )
( )0 22

0 0
int 0

v e AJ eA r
m

 = + + ω γ ω  	
 (43)

which can be compared directly with Eq. (42). In the non-relativistic limit:

( )01, ,mc eAγ →  	  (44)

and both Eqs. (42) and (43) give:

( )0 22

int .e AJ
m

→
ω 	

 (45)
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So in this limit both methods give the same result. In the opposite hyper-
relativistic limit:

( )0eA mc 	  (46)

Equation (42) becomes:

( )0

int .ecAJ →
ω 	

(47)

If the second order term in Eq. (43) is neglected then:

( )0 0
int 0

cJ eA r + ω 


	
 (48)

so:

0
0

v cr + →
ω ω 	

 (49)

i.e.

0
0 0, vv c r→

ω


	
 (50)

in the hyper-relativistic limit.
In general, comparing Eqs. (42) and (43):

( )
( ) ( )

( )( )

0 2 0 22 2
0 0

0 1
0 22 2 2 2

.v e A ce AeA r
m

m c e A

 + + = ω γ ω  ω +
	

 (51)

For an initially stationary electron at the origin:

0 00, 0v r= = 	 (52)

we obtain:

( )( )
1

0 22 2 2 21 m c e A
mc

γ = +
	

(53)
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which is precisely the expression used in the original Hamilton Jacobi method 
of volume one of ‘The Enigmatic Photon’ [1–12]. In these equations the factor:

1
2 2

21 v
c

−
 

γ = − 
  	

(54)

is used to find that:

( )
1202

21 1 .v eA
c mc

−
  
 − = +       	

 (55)

For :v c

( )0 22

2
e Av

mc


	
 (56)

i.e. if

( )0 .eA mc 	  (57)

Equation (56) means that the initially stationary electron has attained an orbital 
velocity of e2A(0)2/mc2 from the applied electromagnetic field. This is therefore a 
self-consistent analysis. The important result for the IFE and radiatively induced 
fermion resonance (RFR) [1–12] is Eq. (45). Therefore IFE and RFR have been 
self-consistently derived in many ways in this paper and in previous work [1-
12], from classical to fully quantum levels. These theoretical methods assume 
a circularly polarized plane wave of type (5), so must be tested experimentally 
under the same conditions, using a circularly polarized radio frequency plane 
wave and an electron beam. In the non-relativistic limit:

( )0 22

2
e AT

m
→

	
 (58)

and comparing Eqs. (45) and (58):

1 1
2 2

T J J= ω = Ω
	

 (59)
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so in the non-relativistic limit:

Ω = ω 	  (60)

i.e. the angular velocity ω of the electromagnetic field is fully imparted to the 
electron. This same result is obtainable from Eq. (29) of the Hamilton Jacobi 
method [1–12]. RFR is then derived from Eq. (58) using the SU(2) basis [1–12] 
to give:

( )0 22

res
e A

m
ω =

	
 (61)

as the difference of energy levels of the Z Pauli matrix as in ESR or NMR. It is 
therefore deduced that gravitation will also affect the RFR resonance frequency 
because RFR is the detection of IFE using resonance instead of induction, and as 
argued already, IFE is affected by gravitation. In the SU(2) basis the interaction 
kinetic energy is:

( ) ( )
2 2

1
2

2 2

T p e p e
m

p ie
m m

∗

∗

= ⋅ + ⋅ +

= + ⋅ × +

σ σ

σ

A A

A A
	

 (62)

where A* is the complex conjugate of A. The RFR term is then given by:

22 .
2res
e i
m

∗ω = × A A
	 (63)

The resonance occurs between the states of:

1 0
0 1Z
 

σ =  −  	
 (64)

and introduces the factor 2 in the numerator of Eq. (63), as in ESR theory. The 
conjugate product is:

( )0 2i A∗× =A A k 	 (65)

so:
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( )0 2 1 0
.

0 1
i A∗  
⋅ × =  − 

σ A A
	  (66)

A photon ωres of a probe beam is absorbed from the interaction kinetic energy:

( )

( )

0 22

spin up

0 22
spin down

0 02 .
0

0
2

e A
TmT

Te A
m

 
    = =     − 
  	

 (67)

Thus:

( ) ( ) ( )

spin up spin down res

0 2 0 2 0 22 2 2

.
2 2

T T

e A e A e A
m m m

− = ω

 
= − − =  

 



	
 (68)

So the RFR frequency is:

( )0 22
res

res .
2 2

e Af
m

ω
= =

π π 	
 (69)

At this frequency the probe beam's photon ωres is absorbed, and one absorption 
line is observed in a spectrometer. Using Eqs. (33) and (38), the RFR resonance 
frequency can be expressed in terms of the pump beam's power density I in 
watts per square meter:

2
0

res 2 .
2
e c If

m
 µ

=  π ω  	
 (70)

The pump beam should be a circularly polarized, radio frequency, plane wave 
for accurate comparison with this theory, and the sample should be N electrons 
in an electron beam. The great advantage of RFR over ESR and NMR is that 
RFR does not use magnets and by adjusting I and ω, has a much greater spectral 
resolution. RFR also has its own chemical shift pattern [1–12], so if developed 
would be a powerful new fermion resonance technique. The Clifford algebra 
needed to prove:

0 Zi∗ ∗ ∗⋅ ⋅ = ⋅ σ + × ⋅σσ σ A A A A kΑ Α 	 (71)
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is as follows. For plane waves:

AZ = 0	  (72)

so:

( ) ( )

* *

* *

0 2 0 2

0 0
0 0

1 0 1 0
0 1 0 1

X Y X Y

X Y X Y

A iA A iA
A iA A iA

A A

∗ −  − 
⋅ ⋅ =   + +   

   
= +   −   

σ σA A

	

 (73)

where:

0

1 0 1 0
,

0 1 0 1Z
   

σ = σ =   −    	
 (13 74)

Q.E.D.

1.5	 Interaction of photon and electron

The ECE equations for the interaction [1–12] are:

( ) 0akT qµ+ = 	  (75)

( ) 0akT Aµ+ = 	  (76)

where qa is the tetrad wave-function of the electron and where A is that of the 
photon. These are generally covariant equations of quantum mechanics. Denote 
the electron momentum by pμ and the photon momentum by nμ. In Eq. (75):

2
1 p pµ

µ= −

 	 (77)

and in Eq. (76):

2
1 µ

µ= − π π

 	  (78) 
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as a result of the operator equivalence rules:

,p i iµ µ µ µ= ∂ π = ∂  	  (79) 

which derive from wave particle dualism. For a free electron:

2

0,aem c qµ

  + =     




	
 (80)

2
1 ,p pµ

µ=−

 	 (81)

and for a free photon:

2

0,p am c
Aµ

  
 + =    




	

 (82)

2
1 ,µ

µ=− π π

 	  (83)

where me and mp are respectively the masses of the electron and photon. On the 
classical level the interaction of the photon and electron is:

free free free freep p eA eAµ µ µ µ µ µ+ π = + + π − 	  (84)

so that total energy/momentum is conserved. The electron momentum increases by:

p p eAµ µ µ→ + 	  (85) 

and the photon momentum decreases by:

.eAµ µ µπ → π − 	  (86)

In general A  is complex valued [1–12], so:

( )( )*
2

1
e p eA p eAµ µ

µ µ→ + +

 	
(87)
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( )( )2
1 .p eA eAµ µ ∗

µ µ→ − π − π −

 	
 (88)

Substituting in Eqs. (75) and (76) and averaging to terms to first order for 
an oscillatory electromagnetic field the following simultaneous wave equations 
are obtained:

( ) 20 22

2 0ae
e

e A m c qµ

  − + =     


  	
 (89)

( ) 20 22

2 0.p a
p

m ce A Aµ

  
 − + =    


 

	

 (90)

So the field interaction is described by:

( ) ( )( )0 22 2 2
2

1
eekT m c e A= −

 	  (91)

( ) ( )( )0 22 2 2
2

1 .ppkT m c e A= −
 	  (92) 

For the electromagnetic field:

( )2 0 22

2
p a a

p

m c e AA Aµ µ

    
 + =          


 

	

 (93)

and for the fermionic field:

( )2 0 22

2 .a ae
e

m c e Aq qµ µ

    + =           


  	
 (94)

These are the generally covariant equations of quantum electrodynamics 
describing the interaction of a photon and electron in general relativity as 
represented by ECE theory. Their classical equivalents are:

( )0 22 2 2
ep p m c e Aµ

µ = − 	  (95)
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( )0 22 2 2
pm c e Aµ

µπ π = − 	  (96)

i.e.:

( )0 22 2 2 2 2 .e pp p m c m c e Aµ µ
µ µ= π π − = − 	  (97)

The interaction of the photon and electron with gravitation requires further 
terms in kT. The above is summarized in the diagram:

	 (98)

but unlike a Feynman diagram of special relativity, this is a diagram of general 
relativity.

1.6	 Electron Photon Graviton Interaction

On the fully quantized level the triple interaction is represented by:

( ) ( )1 2 5 3 4 6p p p p p p+ + = + + 	  (99)

where:

3 1p p A g= + + 	  (100)

4 2p p A g= − + 	  (101)

6 5 2p p g= − 	  (102)

So:

1 2 5 1 2 5 2 .p p p p A g p A g p g+ + = + + + − + + − 	  (103)

In this scheme the electron has gained momentum from both the photon and the 
graviton. The photon loses A (indexless notation) but gains g from the quantized 
gravitational field. The graviton loses g to both the electron and photon, so loses 
a total of 2g. The free particle equations are Eqs. (80) and (82) of Section 5 
and the wave equation of the gravitational field:
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22

0,g am c
Gµ

  
 + =    




	
 (104)

2
1 g gµ µ=−

 	  (105)

where G is a tetrad wave-function. The triple interaction is therefore:

p p eA Gµ µ µ µ→ + +  	  (106)

eA Gµ µ µ µπ → π − +  	  (107)

2g g Gµ µ µ→ −  	  (108)

on the classical level and:

( )( ) 2 2a a
ei eA G i eA G q m e qµ µ µ ∗ ∗

µ µ µ µ µ∂ + + ∂ + + =    	 (109)

( )( ) 2 2a a
pi eA G i eA G A m c Aµ µ µ ∗ ∗

µ µ µ µ µ∂ − + ∂ − + =    	 (110)

( )( ) 2 22 2 a a
gi G i G g m c gµ µ ∗

µ µ µ µ∂ − ∂ − =   	  (111)

on the quantum level. Here ε is a proportionality that plays the role of e for 
the gravitational field. By definition:

( ) ( ) ( ) ( )0 1 2 3:A A A A Aµ µ µ µ µ= + + +
	  (112)

( ) ( ) ( ) ( )0 1 2 3: .G G G G Gµ µ µ µ µ= + + +
	  (113)

Equtions (109) to (111) must be solved as simultaneous equations. In the 
classical limit these simultaneous wave equations become simultaneous equations 
of motion:

( )( ) 2 2
ep eA G p eA G m cµ µ µ ∗ ∗

µ µ+ + + + = 
	  (114)
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( )( ) 2 2
peA G eA G m cµ µ µ ∗ ∗

µ µ µπ − + π − + = 
	  (115)

( )( ) 2 22 2 .gg G g G m cµ µ ∗
µ µ− − =  	  (116)

In the standard model the photon and graviton masses are zero and all that 
is usually considered is:

( )( ) 2 2.ep eA p eA m cµ µ
µ µ+ + =

	 (117)

ECE theory provides a wholly new dimension and allows such problems as 
photon graviton interaction to be considered using the simultaneous equations:

( )( ) 2 2 ,pG G m cµ µ ∗
µ µπ + π + = 

	  (118)

( )( ) 2 2.gg G g G m cµ µ ∗
µ µ− − = 

	 (119)

In the standard model this method cannot be used because the basic wave 
equation of gravitation is missing. This is the ECE wave equation:

( ) 0akT gµ+ = 	  (120)

where the gravitational wave-function is the tetrad g. In this method the light 
deflection due to gravitation for example is:

.vdt
r

θ = ∫ 	  (121)

The most general wave equations for the triple interaction are:

( ) 0akT qµ+ = 	  (122)

( ) 0akT Aµ+ = 	  (123)

( ) 0.akT gµ+ = 	 (124)

For example, for the electron the expression for kT is derived from Eq. (109):
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2 2

2
a aeie i ie i m cA G A G q qµ µ µ ∗ ∗

µ µ µ µ µ
  ∂ − − ∂ − − = −  
      

 

	
  (125)

so:

( ) ( )( )

( ) ( )( )

2 2

2 2electron

1= em ckT eA G eA G

i eA G eA G

µ µ ∗ ∗
µ µ

µ µ µ ∗ ∗
µ µ µ

− + +

− + ∂ + ∂ +

 



 

 
	

 (126)

where:

.p iµ µ= ∂ 	  (127)

In the laboratory:

eA Gµ µ
  	  (128)

by many orders of magnitude. So for all practical purposes and after averaging:

( ) ( )2 2 2
2electron

1kT me c e A Aµ ∗
µ= −

 	  (129)

In a cosmological context, light bending by gravitation is observed, and also 
many other effects of gravitation on light, such as polarization changes [1-12], 
Eqs. (118) and (119) predict that there is an inverse Faraday effect on light 
caused by gravitation.

1.7	 Calculation of light deflection due to gravitation

The relevant semi-classical ECE wave equation leads to:

( )( ) 2 2
pG G m cµ µ ∗

µ µπ + π + =  	  (130)

where πμ is the photon energy-momentum and mp the photon mass. The grav
itational interaction is given by Gμ, where  is to be determined. Adopting the 
results of earlier sections of this paper the interaction kinetic energy is:

( )( )
( ) ( )

0 2 2

int 02 1

G c
T

mc cG
=

+ γ +  	
(131)
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in the limit:

( ) ( )0 1 .G mc + γ 	  (132)

Now identify:

( )0
int

4GmMT cG
r

= =
	  (133)

where G is Newton's constant and M is the mass of a particle that attracts the 
photon mass. Here r is the distance between the particles. By units analysis:

intT J= ω 	  (134)

where ω is angular velocity and J is angular momentum. So:

4 1d GmM
dt r J
θ

ω = =
	  (135)

4 1 .GmM dt
r J

θ = ∫ 	  (136)

Now identify:

2

1 1 1dt
J mc

= =
ω∫
 	  (137)

to find:

2

4GM
rc

θ =
	  (138)

which is the observed relativistic light deflection due to gravity. It has been 
assumed that:

1,J dt= =
ω∫ 	

 (139)

and the de Broglie equation has also been used:



M.W. Evans480

2.mcω= 	  (140)
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