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The Lamb shift in atomic H is calculated from the point of view of a generally 
covariant unified field theory - the Einstein Cartan Evans (ECE) field theory. 
The method adapted is to use an averaged vacuum potential that reproduces 
the g factor of the electron to experimental precision. This averaged poten
tial is deduced from the Thomson radius of the photon and is used in the 
Schrödinger equation of atomic hydrogen (H) to increase the kinetic energy 
operator. The effect on the total energy levels of the H atom is then calculated 
and the Lamb shift deduced analytically without perturbation theory. It is found 
that the averaged vacuum energy affects each orbital of H in a different way 
through its effect on the electron proton distance. This effect is measured by 
distance r(vac) that is found by comparison with the experimental Lamb shift 
between the 2s and 2p orbitals of H. This is a generally applicable method 
that removes the problems of quantum electrodynamics.
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1.1	 Introduction

The Einstein–Cartan–Evans (ECE) unified field theory [1–12] is generally covariant 
in all its sectors and is a causal and objective field theory of physics. As such 
it is diametrically the opposite of quantum electrodynamics (QED), the method 
usually used to calculate the Lamb shift in atomic hydrogen (H) [13–15]. The 
QED method relies on hidden assumptions and adjustable parameters, so it is 
not a first principles theory. QED is a theory of special relativity which at the 
1e-mail: EMyrone@aol.com
2e-mail: horsteck@aol.com
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same time acausal and subjective, and violates special relativity, being therefore 
internally inconsistent on a basic level. The reason is that QED assumes that a 
point electron radiates a virtual photon that does not obey the Einstein equation 
of special relativity and cannot be observed experimentally. The virtual photon 
produces a virtual electron and a virtual positron, which again violate special 
relativity. These virtual electrons and positrons can go backwards or forwards in 
time, travel at any speed, and so on [13–15]. The point electron is affected by 
these virtual entities and is said to be shielded. These ideas emerged from the 
fact that QED is based on the Dirac equation of an electron and the equation of 
the quantized electromagnetic field, in which the potential is subject to second 
quantization and expressed in terms of creation and annihilation operators. A degree 
of precision is claimed for QED, but this is unjustifiable, because it is based on 
methods used to remove singularities in a perturbation method. These methods 
include mass re-normalization, dimensional regularization, and re-normalization of 
singularities introduced by perturbation theory; the arbitrary cut off of a series 
expansion, and the use of thousands of terms, usually put into diagrammatic form 
and known as Feynman diagrams. The result of the QED Lamb shift calculation 
is expressed in terms of the fine structure constant (α). The latter's precision 
is however determined by its least precise constant, the Planck constant h. The 
experimentally measured relative standard uncertainty of h [16] is 1.7 × 10–7 and 
this is orders of magnitude greater than that of the electron g factor, which is 
7.5 × 10–12 So QED can never produce the g factor to a precision greater than 
that of the Planck constant.

In Section 1.2, the ECE theory is used to calculate the Lamb shift in atomic 
H in the non-relativistic limit described by the Schrödinger equation. The average 
effect of the vacuum is deduced from the Thomson radius of the photon. This 
method has previously been used in ECE theory [1–12] to produce the g factor of 
the electron to the limit of precision of the fine structure constant (the precision 
determined by h as just argued). The g factor of the electron is increased in 
ECE theory as follows:

2

1 .
4

g g α → + π  	
(1)

To calculate the Lamb shift with the Schrödinger equation, the kinetic energy 
operator is increased by the same amount as in Eq. (1). This vacuum effected 
kinetic energy operator, when used in the Schrödinger equation of the H atom, 
produces tiny changes in the electron to proton distance in each orbital of the 
H atom. The change is different for each orbital and is expressed in terms of 
the distance r(vac). The latter can be calculated analytically without perturbation 
theory. This method is first shown to produce the basic feature of the Lamb shift 
in atomic H, and is then refined analytically.
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In Section 1.3 the results are graphed and used to illustrate the fact that this 
method is a generally applicable one, capable of being refined almost indefinitely 
by contemporary analytical and computational software.

1.2 	 A Simple non-relativistic calculation of the Lamb shift

The interaction of the electromagnetic field with the hydrogen atom is in ECE 
theory a problem of causal general relativity. In the non-relativistic quantum 
approximation to ECE theory [1-12] the electron and proton are bound together 
by a Coulomb potential and described by the well known öö equation of atomic 
H [17]:
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m r

 
− ∇ − ψ = ψ π 
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 	
(2)

Here ħ is the reduced Planck constant, m is the reduced mass, –e is the charge 
on the electron, e is the charge on the proton, 0 is the vacuum permittivity and 
r is the proton to electron distance and radial coordinate of the spherical polar 
system of coordinates. The total energy levels E of the H atom are given by 
the Schrödinger equation as:
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where a is the Bohr radius:
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and where α is the fine structure constant
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α =
π  	

 (5)

Here n is the principle quantum number [17] and c is the speed of light in a 
vacuum. The Schrödinger equation produces the result:

( ) ( ) 12 2 cm
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−α
= =

	
(6)
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i.e. the energy levels of the 2s orbital and the three 2p orbitals are the same, i.e. 
degenerate. The Dirac equation of special relativistic quantum mechanics refines 
this result [18] to show that:

1 1
2 2

2 2E s E p
   

=   
    	

 (7)

The observed Lamb shift is [17]:

1
1 1
2 2

2 2 0.0353cmE s E p −   
− =   

    	
(8)

and from Eqs. (6) and (8) produces a relative change:

7

exp.

2.048 10−∆ν  = × ν  	
 (9)

i.e. about two parts in ten million. The Lamb shift has no explanation in the 
Schrödinger and Dirac equations of the unperturbed H atom. The generally 
accepted explanation for the Lamb shift was first given by Bethe [19] as the 
effect of the quantized electromagnetic field's zeroth energy level. This is known 
somewhat misleadingly as the effect of the vacuum. More precisely it is due to 
the way in which the electromagnetic field is quantized in terms of harmonic 
oscillators. In order to approach this problem in ECE theory an electromagnetic 
potential is used to increase the value of the kinetic energy operator of Eq. (2). 
This method was first used [1–12] to calculate the g factor of the electron, and 
is based as follows on the Thomson radius of the photon.

The basic hypothesis is that:

( )vac
4

A α
=

κ π



	
(10)

where A(vac) is the classical "vacuum potential", a term that is intended to denote 
the average effect of the electric and magnetic fields that exist in the absence of 
any photons. This idea comes from the fact that the lowest (or zero'th) energy 
level of the electromagnetic field quantized as a harmonic oscillator is

1
2

E n = + ω 
 



	
(11)
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where ħω is the quantum of energy and n the number of photons. It is seen 
that there is an energy:

0
1
2

E = ω
	

(12)

when there are no photons (n = 0). This means [17] that there are fluctuating 
electric and magnetic fields present when there are no photons present. The 
linear momentum associated with these "vacuum fields" is denoted p(vac), and 
the linear momentum associated with ħω is ħκ, where:

c
ω

κ =
	

(13)

is the wave-number magnitude. These ideas come from the fact that in quantum 
mechanics [17] the zero'th energy eigenvalue of the harmonic oscillator is non-zero.

The magnitude of A(vac) may be expressed in terms of the magnetic flux 
density magnitude B(0) associated with the quantum of energy ħω [1–12]. Thus

( )0 0ceB
Ar
µ

=
	

(14)

where μ0 is the vacuum permeability defined by:

0 0 2

1
c

µ =
	

 (15)

and where Ar is the surface area associated with the energy quantum ħω. This 
is obtained from the Thomson radius:

1r =
κ 	

(16)

and so the surface area of the sphere with this radius is:

2
2

44 .Ar r π
= π =

κ 	
(17)

Thus:
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and:
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The fine structure constant is therefore defined by:

( )0 2

0

.
4

eA e
c

α = =
κ π  	

(20)

The average value of A(0) is now found by averaging over the polar angles: 
recall that the surface area of a sphere of radius r is:

2 2 2

0 0
sin 4S d r d r

π π
= φ θ θ = π∫ ∫ 	

(21)

so for unit radius:

2

0 0
sin 4 .d d

π π
φ θ θ = π∫ ∫ 	

(22)

Thus:

( ) ( ) ( ) ( )20 0 0

0 0
, sin 4 .A A d d A

π π
= θ φ φ θ θ = π∫ ∫ 	

(23)

This procedure means that the quantum of momentum ħκ with Thomson radius 
1/κ is averaged over θ and f of the spherical polar coordinate system, i.e. A(0) 
is averaged over all possible orientations. The result is Eq. (10), which comes 
from a quantized electromagnetic field.

Another method of justifying the factor 4π is to consider the magnetic flux 
associated with the quantum of electromagnetic energy ħω [1–12]:

( )0 0

0

:
4 4

ce e
c

µ
Φ = =

π π 	
(24)

it is known [13] that the quantum of magnetic flux can also be expressed as:
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e
Φ =



	
 (25)

so:

( )0 .Φ = αΦ
	  (26)

In fact:

04
e

c e
= α

π


 	
(27)

so

( )0Φ = αΦ 	  (28)

Q. E. D.
From Eq. (10) we may express ( )0A  as follows:

( ) ( )0 0
2 2

016
eA E

c
=

π  	
(29)

where E(0) is the zero'th point energy associated with the quantized electromagnetic 
field. Now extend Eq. (29) to energy momentum:

( ) ( )vac vac .
4

eA pµ µ

α
π 	

(30)

It is seen that this is a type of minimal prescription [13–15] that accounts for 
the vacuum energy. More accurately, vacuum energy should be termed space-time 
energy. The effect of ( )vacAµ  is as follows:

1 .
4

p pµ µ

α → + π  	
 (31)

So the Dirac equation of the electron changes to [1–12]:
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( )( )1 0,

: .
4

p mcµ
µ

′γ + α − ψ =

α′α = 

π  	

(32)

This is equivalent to an increase in the Dirac matrix:

( )1 .µ µ′γ → + α γ 	  (33) 

In QED this increase is denoted:

( )( )21µ µγ → + Λ γ
	

(34)

where ( )2Λ  is a convergent vertex [13-15], a kind of adjustable parameter.
The well known factor 2 of the Dirac theory of the electron interacting with 

a classical electromagnetic field originates geometrically in the relation between 
the Minkowski metric ημν and the Dirac matrices [13]:

2 .µν µ ν ν µη = γ γ + γ γ 	 (35)

Both Dirac matrices change according to Eq. (33), i.e.:

( )1 ,µ µ′γ → + α γ 	  (36)

( )1 ,ν ν′γ → + α γ 	  (37)

so:

( ) ( )22 1µ ν ν µ µ ν ν µ′γ γ + γ γ → +α γ γ + γ γ
	

 (38)

and the g factor of the electron, g = 2, changes to:

( )
2

ECE 2 1 .
4

g α = + π  	
 (39)

Note that this result happens to agree exactly to first order in a with the well 
known calculation of Schwinger [13] in QED:



The Lamb shift in atomic hydrogen 501

( )Schwinger 2g α
= +

π 	
 (40)

and gives a small correction to second order in α.
The Schrödinger equation (2) is changed therefore by the same factor, appearing 

in the kinetic energy operator. The latter is defined by the classical:

2

2
pT
m

=
	

(41)

and the operator equation:

.p i→− ∇ 	  (42) 

So the kinetic energy operator is:

2 2
ˆ .

2
T

m
∇

= −


	
 (43) 

This appears as the square of momentum, so:

2
2 21 .

4
α ∇ → + ∇ π  	  

(44)

Our method of calculating the Lamb shift is therefore based on the same 
method as used to calculate g of the electron [1–12]. Before proceeding, we 
discuss the precision of the ECE method for g of the electron.

From ECE theory:

2 2

22 1 2
4 8

g α α α = + = + + π π π  	
(45)

with basic definition:
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e
c

α =
π 

	
(45a)

The fundamental constants of physics are agreed upon by treaty in standards 
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laboratories such as www.nist.gov of the US National Institute for Standards and 
Technology. This site gives:

(exptl.) = 2.0023193043718 ± 0.0000000000075g 	 (46)

-34(exptl.) = (6.6260693 ± 0.0000011) × 10 sh J 	  (47) 

-19(exptl.) = (1.60217653 ± 0.000000 14) × 10e C 	 (48) 

8 -1(exact) = 2.99792458 × 10c ms 	 (49) 

12 1 2 1
0 (exact) = 8.854187817 × 10 J C m− − − 	 (50) 

-7 2 2 1
0 (exact) = 4  10 Js C m− −µ π× 	 (51)

with relative standard uncertainties. By treaty:

0 0 2

1
c

µ =
	

(52)

is taken as exact. With a sufficiently precise value of π:

3.141592653590.π = 	  (53)

Using these values in Eq. (45a) gives:

 0.007297(34)α = 	  (54)

where the result has been rounded off to the relative standard uncertainty of h, 
the least precisely known constant of α. Thus α cannot be more precisely known 
than h. The latter is determined by an experimental method described on www.
nist.gov. Now use Eq. (54) in Eq. (45) to give the theoretical value of g from 
ECE theory:

( ) ( )ECE 2.002323 49 .g = 	 (55)

The experimental value of g is known to much greater precision than h, and is:

g(exptl.) = 2.0023193043718 ± 0.0000000000075. 	 (56) 
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It is seen that the difference is:

g(ECE) - g(exptl.) = 0.000004 	 (57)

which is about the same order of magnitude as the experimental uncertainty in 
h. It is concluded that ECE gives g as precisely as the uncertainty of h will 
allow. The latter is not given consistently in the literature. For example, a much 
used text such as Atkins [17] gives it as:

h(Atkins) = 6.62618 × 10-34Js 	 (58)

without uncertainty estimates. This is very different (fourth decimal place) from 
the NIST value. Despite this, Atkins [17] gives:

g(Atkins) = 2.002319314 	 (59)

which is different from Eq. (56) only in the eighth decimal place. This is severely 
self-inconsistent. Atkins gives the g factor of the electron as:

g(Atkins) = 2.002319314 	 (60)

which is different from the NIST value in the eighth decimal place, while it is 
claimed at NIST that g(exp) from Eq. (56) is accurate to the twelfth decimal 
place. This is a another major inconsistency between well used current sources. 
Ryder [13] gives:

g(Ryder) = 2.0023193048 	 (61)

which is different from the NIST value in the tenth decimal place, and Ryder 
claims that QED gives g to this same precision. As we have seen, this cannot 
be true because the uncertainty of any theoretically calculated g is limited by 
the uncertainty on h. In summary:

( )Schwinger 2 2.002322(8)g α
= + =

π  	
(62)

( )
2

2ECE 2 2.002323(49)
8

g α α
= + + =

π π 	
(63)

g(NIST) = 2.0023193043718 ± 0.0000000000075 	                        (64)

g(Atkins) = 2.002319314 ± (?) 	 (65)
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g(Ryder) = 2.0023193048 ± (?) 	 (66)

and there is little doubt that other textbooks and sources will give further different 
values of g. So where does this finding leave the claims of QED? The Wolfram 
site claims that QED gives g using the series:

2 3

4
12

2 1 0.328 1.181
2

1.510 4.393 10

g

−

 α α α   = + − +     π π π   
α − + + ×   π  



	

(67)

which is derived from thousands of Feynman diagrams (sic). However, the various 
terms in Eq. (67) come from all the assumptions listed in the introduction, and 
so this cannot be a first principles theory despite its elaborate nature.

An even worse internal self-inconsistency emerges because at NIST the fine 
structure constant is claimed to be:

α(NIST) = (7.297352560 ± 0.000000024) × 10–3 	 (68)

both experimentally and theoretically. The first thing to note is that this claim, Eq. 
(68), is different in the eighth decimal place from Eq. (63), which is calculated 
from NIST's own fundamental constants, Eqs. (55) to (60). So the NIST website 
is internally inconsistent to an alarming degree, because it is at the same time 
claimed that Eq. (68) is accurate to the tenth decimal place. From Eq. (56) it is 
seen that h at NIST is accurate only to the sixth decimal place, which limits the 
accuracy of to this, i.e. ten thousand times less precise than claimed. The source 
of this very large internal discrepancy must therefore be found. The theoretical 
claim for the fine structure constant at NIST comes from QED, which is described 
as a theory in which an electron emits a virtual photon, which emits virtual 
electron positron pairs. The virtual positron is attracted and the virtual electron 
is repelled from the real electron. This process results in a screened charge, 
and the fine structure constant in QED is the square of an entity known as the 
completely screened charge, a mathematical limiting value. This is defined as 
the limit of zero momentum transfer or in the limit of infinite distance. At high 
energies the fine structure constant drops to 1/128, and so is not a constant at all. 
It certainly cannot be claimed to be precise to the relative standard uncertainty 
of Eq. (68), taken directly from the NIST website itself (www.nist.gov).

The experimental claim for the fine structure constant at NIST comes from 
the use of the quantum Hall effect combined with a calculable cross capacitor 
to measure the standard resistance. The immediate problem with this method is 
the use of the von Klitzing constant:
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( )0
2 sic

2
h cR
eκ

µ
= =

	
 (69)

which is clearly limited once more to the accuracy of h. The latter is found 
at NIST by a different experimental method, giving Eq. (56). The accuracy of 
the charge on the proton is only ten times better than h, so RK cannot be more 
accurate than h. If α were really as accurate as claimed in Eq. (68), then R and 

2

h
e  would also be known to this accuracy, conflicting with Eqs. (56) and (57) 
of the same NIST website.

In view of these serious problems it is considered that the claim of QED to 
reproduce the Lamb shift to high accuracy is also in complete doubt, as are all the 
so-called "precision tests" of QED, for example the g of the electron, the Lamb 
shift, positronium and so forth. The only sensible way forward is to calculate 
the Lamb shift in terms of r(vac) and to find r(vac) from the experimental 
value of the Lamb shift, making no unjustifiable claims of precision. This aim 
is achieved as follows on the non-relativistic level and can be considerably 
refined in future work.

The distance r(vac) is defined from Eq. (2) and (44) by:

( )
2 2 2 2

2
0

1 1
2 2 16 4 vac

e
m r r r

  ∇ α α
− + ψ = − ψ    π π π +   



 	
 (70)

i.e. the effect of the vacuum potential is considered to be a shift in the electron 
to proton distance for each orbital. To first order in α:

( )
2 4 1 1

vac
mc

r r r
 π ∇ ψ = − − ψ   +   	

(71)

Using the normalization given by Atkins [17] we consider five of the H orbitals:

( )
3
2

1
2

1 11 exp ,rs
a a

   ψ = −   
   π 	

 (72)

( ) 1
2

12 2 exp ,
2

4 2

r rs
a a

   ψ = − −   
   π 	

(73)

( )
1 3
2 21 3 1 12 cos exp ,

2 22 6Z
r rp

a a a
      ψ = θ −      π       	

(74)
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( )
1 3
2 21 3 1 12 sin exp ,

2 2 22 6
i

X
r rp e

a a a
φ       ψ = − θ −      π       	

(75)

( )
1 3
2 21 3 1 12 sin exp ,

2 2 22 6
i

Y
r rp e

a a a
− φ       ψ = − θ −      π       	

(76)

In spherical polar coordinates the laplacian operator is [17]:

2
2 2

2 2 2 2 2

1 1 1sin
sin sin

r
r r r r r

∂ ∂ψ ∂ ∂ψ ∂ ψ   ∇ ψ = + θ +   ∂ ∂ θ ∂θ ∂θ θ ∂φ    	
(77) 

Computer algebra may now be used to evaluate r(vac) for each orbital. We 
first consider for the sake of illustration a special case of the 2pz orbital, the 
maximum:

cos 1.θ = 	 (77a)

It is found that:

( )
( )( ) ( )vac 1 1 11 ,

2 2vac
r

s
mca r ar r r

 = ⋅ − π+  



	
(78)

( )
( )( ) ( )vac 1 1 12 ,

2 8vac
r

s
mca r ar r r

 = ⋅ − π+  



	
(79)

( )
( )( ) ( ), 2

vac 1 1 12 cos 1 .
2 8vac Z

r ap
mca r a rr r r

 θ = = ⋅ − − π+  



	
(80)

This checks that the method gives the correct qualitative result. A remarkable 
simplification occurs to show that the Lamb shift is proportional to:

( )( )
( )( )

( )( )
( )( ) 2

vac 2 vac 2 ,cos 1 1 1
4vac vac

Zr s r p
mc rr r r r r r

θ =
− = ⋅ ⋅

π+ +


	
 (15 81)

More generally the Lamb shift will depend on the polar coordinates. Despite 
its huge complexity, QED is unable to give these detailed results, which are 
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found by dispensing with perturbation theory and virtual particles, and calculating 
analytically. Finally the constant of proportionality in Eq. (72) has to be found. 
The potential energy of the H atom in wave-numbers is:

0V
r
α

= −
	

(82)

before the vacuum perturbation and is:

( )vac
V

r r
α

= −
+ 	

(83)

after the vacuum perturbation. So the change in potential energy is positive:

( )
( )
( )( )0

vac1 1
vac vac

r
V V V

r r r r r r

  
∆ = − = α − = α     + +    	

(84) 

Note that the factor in Eq. (86) is obtained from the basic assumption used 
in this paper, that the Schrödinger equation of H with radiative correction, to 
first order in a:

2 2
2

0

1
2 2 4

e E
m r

α − + ∇ ψ − ψ = ψ π π 


 	
(85)

is equivalent to:

( )( )
2 2

2

0

.
2 4 vac

e E
m r r

− ∇ ψ − ψ = ψ
π +



 	
(86)

It is assumed that r(vac) is small so the wave-function in Eq. (86) is to a 
very good approximation the wave-function of H in the absence of the radiative 
correction.

0.ψ = ψ 	  (87)

Therefore it follows that:
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( )
2

0 0
1 14

vac
mc

r r r
 

∇ ψ = − π − ψ  + 

	
 (88)

and from the above calculation we obtain:

( ) ( ) 3 2
2 2 2

1 1 1 1 .
vac vac

2p sr r r r mc r
− =

+ +
π



	
(89)

The change in potential energy is therefore:

3 2
2

1

2
V

mc r
α

∆ =
π



	
 (90)

and the change in total energy is:

-1
32
2

1 1 0.0353cm
2

16

rE V
n a a mc r

 α ∆ = ∆ = =
 

π 



	
 (91)

which is the Lamb shift in atomic H. Here r is:

r = 1.69 × 10–7 m. 	 (92)

From Eq. (89):

( ) ( )
( )( ) ( )( )

2 2
3 2

2 2 2

vac vac 1 1 .
vac vac 2

s p

p s

r r
mc rr r r r

−
=

+ + π



	
(93)

Eq. (89) implies that:

( ) ( )2 2vac vacs pr r r  	  (94)

so in this approximation, Eq. (93) becomes:

( ) ( )2 2 3
2

1vac vac
2

s pr r
mc

−
π





	
 (95)
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i.e.

( ) ( )2 2 5
2

1vac vac
2

s p
hr r

mc
−

π


	
 (96)

where the standard Compton wavelength is:

122.426 10 m.h
mc

−= ×
	

(97) 

Thus we arrive at:

( ) ( ) 13
2 2vac vac 3.48 10 m.s pr r −− × 	  (98)

This is a sensible result because the classical electron radius is:

( )
2

15
2

0

1classical 2.818 10 m
4

er
mc

−= = ×
π 	

(99)

and the Bohr radius is:

a = 5.292 × 10–11 m 	 (100)

so the radiative correction perturbs the electron orbitals by about ten times the 
classical radius of the electron, and by orders less than the Bohr radius. This is 
a remarkable result because it shows why the Lamb shift is constant as observed. 
For a given orientation defined by:

cos θ = 1 	 (101)

the shift is determined completely by 
1
r  within a constant of proportionality

3
2

1 .
32

r
a mc
α

=
π



	
(102)

The next section discusses the angular dependence of the Lamb shift and 
gives some graphical results. Finally in this section, consideration is given to 
an averaged 2p orbital defined by:
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( ) ( ) ( ) ( )( )
1

2 22 2 2 2

2 1 exp
2

Z X Yp p p p

r r
a a

ψ = ψ −ψ ψ

   = − −   
    	

 (103)

within a normalization factor. The Lamb shift is then evaluated from:

( ) ( )2
12 4 2mcs x s∇ ψ = − π ψ

 	
 (104) 

and

( ) ( )2
22 4 2mcp x p∇ ψ = − π ψ

 	
(105)

so that

1
1 1 1

2 8
x

mc a r a
 = ⋅ − π  



 	
(106)

2 2

1 1 1 .
2 8

ax
mc a r r a

 = ⋅ − − π  



	
 (107)

The difference in these values gives the Lamb shift between the 2s state in 
Hand the 2p state averaged as in Eq. (94), with all angular dependence removed. 
This again gives Eq. (81).

1.3	  Angular dependence of the Lamb shift and graphical results

In the following we present two further models for calculating the Lamb shift with 
averaged 2p orbitals of H. According to Eq. (71) the Lamb shift follows from

2 4 mc xπ
∇ ψ = − ψ

 	
(108)

with

( )
1 1 .

vac
x

r r r
= −

+ 	
(109)
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The natural way would be to use the full angular dependence of the wave-
functions (Eqs. 72–76) in these equations. However, applying the full laplacian 
operator (77) to the 2p orbitals and inserting the results into (108) gives the 
same result as for the 2s orbital, namely Eq. (79). The detailed computer algebra 
calculation shows that the θ and Φ dependencies after application of the laplacian 
are the same as for the wavefunctions itself. So the angular dependence cancels 
out in Eq. (108). The remaining factors lead to Eq. (79) again. In the following 
we inspect two alternative methods of calculating the Lamb shift by averaged 
2p orbitals.

First method

We use the 2p mean wavefunction defined by

( ) (( ) ( ) ( ))
1

2 22 : 2 2 2Z X pYp p pψ = ψ −ψ ψ
	  

(110)

The difference wave function responsible for the experimentally observed Lamb 
shift is then given by

( ) ( ): 2 2 .psψ = ψ − ψ
	

 (111)

By inserting (72)–(76) this leads to

2 1 exp
2

r r
a a

   ψ = − −   
    	

 (112)

The normalization factors were omitted because they cancel out in (108). We 
see that the angular dependence has disappeared, no further averaging is needed. 
Evaluation of (108) gives

( )
2 2

2

1 12
mc 16

r gar ax
a r r a

− + −
=

π −


	
 (113)

With

V x∇ = −α 	 (15 114)

we obtain
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2 2

2 3

1 9 12
2 mc 128

xr r ar aE
n a r a
α α − +

∆ = − =
α π −



	
 (115)

Setting ΔE to the experimental value of 0.0353 cm–1 (or 4.372 · 10–6 eV = 
0.1607·10–6 Hartree) yields the effective radius values (in Bohr radius aB):

r1 = 1.63 aB 	 (116a)

r2 = 7.37 aB 	 (116b)

Compared to the result (92) this is very small, the Lamb shift is highly 
overestimated in this appromimation. The reason probably is that Eq. (108) is 
set up for the difference wave function ψ. Although (108) is linear in ψ, it is 
not in handling the vacuum effect radius r(vac) as can be seen from Eq. (109). 
So we work out an alternative method.

Second method

The second method uses separate expressions of the effects of r(vac) for each 
orbital ψ(2s) and ( )2 pψ  in correspondence to Eqs. (78–80):

( ) ( )2
1

4mc2 2s x sπ
∇ ψ = − ψ

 	
 (117)

( ) ( )2
2

4mc2 2p x pπ
∇ ψ = ψ

 	
 (118)

with averaged orbitals ( )2 pψ  asd defined by (110). For Eq. (116) we can 
directly take over the result of Eq. (79):

1
1 1 1 .

mc 2 8
x

a r a
 = − π  



	
(119)

Evaluation of (118) leads to

2 2

1 1 1 .
mc 2 8

ax
a r r a
 = − − π  



	
 (120)

The difference term for the 2s-2p Lamb shift then is
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1 2 2

1
mc 2

x x
r

− =
π


	
(121)

This is exactly result (81) which was obtained for ψ(2pz) with cosθ =1. 
Therefore the Lamb shift for this angular averaged model is the same as for the 
2pz orbital in the direction of maximum amplitude.

Now we discuss the radial dependence of some characteristic terms in graphical 
representation. All figures are in atomic units.The kinetic energy distribution

( )( )
2

2 21 4
2

s r r
m

− ∇ ψ ⋅ π


	
(122)

of the 1s orbital is shown in Fig. 1a. There is a zero transition for r = 2. The 
corresponding transition also appears in the inverse radius difference (109). This 
can be seen from Fig. 1b where this difference is plotted, showing the effective 
potential of the radiative effects. The r dependence of the vacuum interaction 
radius r(vac) itself can be calculated from Eq. (78):

( )( )
2

2

2vac 1
4 2
ar rr s

r a a
−

=
+ β − 	

(123)

with

Fig. 1a. Kinetic energy radial distribution function of H 1s orbital.
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mcπ
β =

 	
(124)

This function is graphed in Fig. 1.1c. r(vac) is positive for r ≤ 2 and negative 
above. The zero crossing corresponds to Figs. 1.1a and 1.1b. A negative radius 
r(vac) means that there is a decrease in potential instead of increase due to 
vacuum effects.

The same three graphs are shown for the 2s orbital in Figs. 1.2a–c. Here only 
the zero in kinetic energy at r = 8 is also occurring in the effective potential. 
r(vac) is a second degree rational function of r, similar to the 1s case:

( )( )
2

2

8vac 2
1 8
ar rr s

r b a a
−

=
+ β − 	

(125)

Its sign coincides with that of the effective potential of Fig. 2b.
Corresponding results apply to the 2pZ, orbital (Figs. 3a-c). Here both zeros 

in kinetic energy are visible in the effective potentialof r(vac). Compared to the 
2s orbital, the vacuum interaction radius itself has an analytical dependence of 
one degree higher in r:

Fig. 1b. Difference term of potential energy for H 1s orbital.
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Fig. 1c. Vacuum interaction radius r(vac) for H 1s orbital.

Fig. 2a. Kinetic energy radial distribution function of H 2s orbital.
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Fig. 2b. Difference term of potential energy for H 2s orbital.

Fig. 2c. Vacuum interaction radius r(vac) for H 2s orbital.
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Fig. 3a. Kinetic energy radial distribution function of H 2pZ orbital.

Fig. 3b. Difference term of potential energy for H 2pZ orbital.
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( )( ) ( )
3 2

2 2 2

8vac 2
16 8 8Z

r a rr p
r a a r a

− +
=

+ β − +
	

(126)

All r(vac) functions of the three orbitals have in common that they are pos
itive in regions where the wave function has significant values which can be 
seen from the kinetic energy distribution diagrams. This means that effectively 
energy is transferred from the quantum background to the atom. In the outer 
regions there is a small energy transport in the opposite direction.

Finally we present the difference terms between 2 s and 2p which make up 
the experimental Lamb shift energy difference. Fig. 4 shows the difference of the 
potential energy terms (Figs. 2b, 3b). There is a positive energy contribution near 
to the core which effects the positive sign of the Lamb shift energy. According 
to Eq. (93) it has a simple hyperbolic form. The difference of the radii itself is 
graphed in Fig. 5. The absolute values are small compared to the atomic radius, 
representing the fact that the Lamb shift is a relative energy correction of the 
order 10–7.

We conclude that in this paper all important aspects of the Lamb shift could 
be made plausible on base of ECE theory. Calculations were carried out in the 
non-relativistic limit by using the Schrödinger equation of atomic Hydrogen. 
Angular dependent effects play no significant role.

Fig. 3c. Vacuum interaction radius r(vac) for H 2pZ orbital.
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Fig. 4. Difference of potential terms for Lamb shift 2s — 2pZ.

Fig. 5. Effective Lamb shift radius r(vac)(2s) — r(vac)(2pZ).
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